-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
MultiIndex.get_loc misbehaves on NaNs #18485
Comments
Notice that In [2]: mi = pd.MultiIndex(levels=[[1, 2, 3, 5], [4, 6]], labels=[[3, 1, 2, 0], [1, -1, 0, -1]])
In [3]: flat = pd.Index(list(mi), tupleize_cols=False)
In [4]: flat.get_indexer(flat)
Out[4]: array([0, 1, 2, 3])
In [5]: flat.get_indexer(mi)
Out[5]: array([0, 1, 2, 3]) but
|
btw, these are going to totally blow up if you have more than 1 nan because you can then have multiple matches. I think I did this internally in the block manager, IOW, 1 nan on indexing is ok, more than 1 we raise. |
Not sure I understand the difference with ordinary values |
This only affects small (< 10000 elements) indexes:
see #18519 . |
closes pandas-dev#18519 closes pandas-dev#18818 closes pandas-dev#18520 closes pandas-dev#18485 closes pandas-dev#15994
closes pandas-dev#18519 closes pandas-dev#18818 closes pandas-dev#18520 closes pandas-dev#18485 closes pandas-dev#15994
closes pandas-dev#18519 closes pandas-dev#18818 closes pandas-dev#18520 closes pandas-dev#18485 closes pandas-dev#15994
closes pandas-dev#18519 closes pandas-dev#18818 closes pandas-dev#18520 closes pandas-dev#18485 closes pandas-dev#15994
closes pandas-dev#18519 closes pandas-dev#18818 closes pandas-dev#18520 closes pandas-dev#18485 closes pandas-dev#15994
closes pandas-dev#18519 closes pandas-dev#18818 closes pandas-dev#18520 closes pandas-dev#18485 closes pandas-dev#15994
closes pandas-dev#18519 closes pandas-dev#18818 closes pandas-dev#18520 closes pandas-dev#18485 closes pandas-dev#15994 closes pandas-dev#19086
closes pandas-dev#18519 closes pandas-dev#18818 closes pandas-dev#18520 closes pandas-dev#18485 closes pandas-dev#15994 closes pandas-dev#19086
closes pandas-dev#18519 closes pandas-dev#18818 closes pandas-dev#18520 closes pandas-dev#18485 closes pandas-dev#15994 closes pandas-dev#19086
closes pandas-dev#18519 closes pandas-dev#18818 closes pandas-dev#18520 closes pandas-dev#18485 closes pandas-dev#15994 closes pandas-dev#19086
closes pandas-dev#18519 closes pandas-dev#18818 closes pandas-dev#18520 closes pandas-dev#18485 closes pandas-dev#15994 closes pandas-dev#19086
closes pandas-dev#18519 closes pandas-dev#18818 closes pandas-dev#18520 closes pandas-dev#18485 closes pandas-dev#15994 closes pandas-dev#19086
closes pandas-dev#18519 closes pandas-dev#18818 closes pandas-dev#18520 closes pandas-dev#18485 closes pandas-dev#15994 closes pandas-dev#19086
closes pandas-dev#18519 closes pandas-dev#18818 closes pandas-dev#18520 closes pandas-dev#18485 closes pandas-dev#15994 closes pandas-dev#19086
closes pandas-dev#18519 closes pandas-dev#18818 closes pandas-dev#18520 closes pandas-dev#18485 closes pandas-dev#15994 closes pandas-dev#19086
closes pandas-dev#18519 closes pandas-dev#18818 closes pandas-dev#18520 closes pandas-dev#18485 closes pandas-dev#15994 closes pandas-dev#19086
Code Sample, a copy-pastable example if possible
Problem description
I think this is actually the cause for this example, which is different from the one reported at the top of #18455 .
Expected Output
array([ 0, 1, 2, 3])
Output of
pd.show_versions()
INSTALLED VERSIONS
commit: b45325e
python: 3.5.3.final.0
python-bits: 64
OS: Linux
OS-release: 4.9.0-4-amd64
machine: x86_64
processor:
byteorder: little
LC_ALL: None
LANG: en_GB.UTF-8
LOCALE: en_GB.UTF-8
pandas: 0.22.0.dev0+201.gb45325e28
pytest: 3.0.6
pip: 9.0.1
setuptools: 33.1.1
Cython: 0.25.2
numpy: 1.12.1
scipy: 0.18.1
pyarrow: None
xarray: None
IPython: 5.2.2
sphinx: None
patsy: 0.4.1+dev
dateutil: 2.6.0
pytz: 2016.10
blosc: None
bottleneck: 1.2.0
tables: 3.3.0
numexpr: 2.6.1
feather: 0.3.1
matplotlib: 2.0.0
openpyxl: 2.3.0
xlrd: 1.0.0
xlwt: 1.2.0
xlsxwriter: None
lxml: 3.7.1
bs4: 4.5.3
html5lib: 0.999999999
sqlalchemy: 1.0.15
pymysql: None
psycopg2: None
jinja2: 2.8
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None
The text was updated successfully, but these errors were encountered: