Skip to content

Commit

Permalink
Split test_categorical into subpackage (#18497) (#18508)
Browse files Browse the repository at this point in the history
  • Loading branch information
WillAyd authored and jreback committed Dec 8, 2017
1 parent 9629fef commit 3395742
Show file tree
Hide file tree
Showing 37 changed files with 4,985 additions and 4,843 deletions.
Empty file.
10 changes: 10 additions & 0 deletions pandas/tests/categorical/common.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
# -*- coding: utf-8 -*-

from pandas import Categorical


class TestCategorical(object):

def setup_method(self, method):
self.factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'],
ordered=True)
320 changes: 320 additions & 0 deletions pandas/tests/categorical/test_analytics.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,320 @@
# -*- coding: utf-8 -*-

import pytest
import sys

import numpy as np

import pandas.util.testing as tm
from pandas import Categorical, Index, Series

from pandas.compat import PYPY


class TestCategoricalAnalytics(object):

def test_min_max(self):

# unordered cats have no min/max
cat = Categorical(["a", "b", "c", "d"], ordered=False)
pytest.raises(TypeError, lambda: cat.min())
pytest.raises(TypeError, lambda: cat.max())

cat = Categorical(["a", "b", "c", "d"], ordered=True)
_min = cat.min()
_max = cat.max()
assert _min == "a"
assert _max == "d"

cat = Categorical(["a", "b", "c", "d"],
categories=['d', 'c', 'b', 'a'], ordered=True)
_min = cat.min()
_max = cat.max()
assert _min == "d"
assert _max == "a"

cat = Categorical([np.nan, "b", "c", np.nan],
categories=['d', 'c', 'b', 'a'], ordered=True)
_min = cat.min()
_max = cat.max()
assert np.isnan(_min)
assert _max == "b"

_min = cat.min(numeric_only=True)
assert _min == "c"
_max = cat.max(numeric_only=True)
assert _max == "b"

cat = Categorical([np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1],
ordered=True)
_min = cat.min()
_max = cat.max()
assert np.isnan(_min)
assert _max == 1

_min = cat.min(numeric_only=True)
assert _min == 2
_max = cat.max(numeric_only=True)
assert _max == 1

@pytest.mark.parametrize("values,categories,exp_mode", [
([1, 1, 2, 4, 5, 5, 5], [5, 4, 3, 2, 1], [5]),
([1, 1, 1, 4, 5, 5, 5], [5, 4, 3, 2, 1], [5, 1]),
([1, 2, 3, 4, 5], [5, 4, 3, 2, 1], [5, 4, 3, 2, 1]),
([np.nan, np.nan, np.nan, 4, 5], [5, 4, 3, 2, 1], [5, 4]),
([np.nan, np.nan, np.nan, 4, 5, 4], [5, 4, 3, 2, 1], [4]),
([np.nan, np.nan, 4, 5, 4], [5, 4, 3, 2, 1], [4])])
def test_mode(self, values, categories, exp_mode):
s = Categorical(values, categories=categories, ordered=True)
res = s.mode()
exp = Categorical(exp_mode, categories=categories, ordered=True)
tm.assert_categorical_equal(res, exp)

def test_searchsorted(self):
# https://github.com/pandas-dev/pandas/issues/8420
# https://github.com/pandas-dev/pandas/issues/14522

c1 = Categorical(['cheese', 'milk', 'apple', 'bread', 'bread'],
categories=['cheese', 'milk', 'apple', 'bread'],
ordered=True)
s1 = Series(c1)
c2 = Categorical(['cheese', 'milk', 'apple', 'bread', 'bread'],
categories=['cheese', 'milk', 'apple', 'bread'],
ordered=False)
s2 = Series(c2)

# Searching for single item argument, side='left' (default)
res_cat = c1.searchsorted('apple')
res_ser = s1.searchsorted('apple')
exp = np.array([2], dtype=np.intp)
tm.assert_numpy_array_equal(res_cat, exp)
tm.assert_numpy_array_equal(res_ser, exp)

# Searching for single item array, side='left' (default)
res_cat = c1.searchsorted(['bread'])
res_ser = s1.searchsorted(['bread'])
exp = np.array([3], dtype=np.intp)
tm.assert_numpy_array_equal(res_cat, exp)
tm.assert_numpy_array_equal(res_ser, exp)

# Searching for several items array, side='right'
res_cat = c1.searchsorted(['apple', 'bread'], side='right')
res_ser = s1.searchsorted(['apple', 'bread'], side='right')
exp = np.array([3, 5], dtype=np.intp)
tm.assert_numpy_array_equal(res_cat, exp)
tm.assert_numpy_array_equal(res_ser, exp)

# Searching for a single value that is not from the Categorical
pytest.raises(ValueError, lambda: c1.searchsorted('cucumber'))
pytest.raises(ValueError, lambda: s1.searchsorted('cucumber'))

# Searching for multiple values one of each is not from the Categorical
pytest.raises(ValueError,
lambda: c1.searchsorted(['bread', 'cucumber']))
pytest.raises(ValueError,
lambda: s1.searchsorted(['bread', 'cucumber']))

# searchsorted call for unordered Categorical
pytest.raises(ValueError, lambda: c2.searchsorted('apple'))
pytest.raises(ValueError, lambda: s2.searchsorted('apple'))

with tm.assert_produces_warning(FutureWarning):
res = c1.searchsorted(v=['bread'])
exp = np.array([3], dtype=np.intp)
tm.assert_numpy_array_equal(res, exp)

def test_unique(self):
# categories are reordered based on value when ordered=False
cat = Categorical(["a", "b"])
exp = Index(["a", "b"])
res = cat.unique()
tm.assert_index_equal(res.categories, exp)
tm.assert_categorical_equal(res, cat)

cat = Categorical(["a", "b", "a", "a"], categories=["a", "b", "c"])
res = cat.unique()
tm.assert_index_equal(res.categories, exp)
tm.assert_categorical_equal(res, Categorical(exp))

cat = Categorical(["c", "a", "b", "a", "a"],
categories=["a", "b", "c"])
exp = Index(["c", "a", "b"])
res = cat.unique()
tm.assert_index_equal(res.categories, exp)
exp_cat = Categorical(exp, categories=['c', 'a', 'b'])
tm.assert_categorical_equal(res, exp_cat)

# nan must be removed
cat = Categorical(["b", np.nan, "b", np.nan, "a"],
categories=["a", "b", "c"])
res = cat.unique()
exp = Index(["b", "a"])
tm.assert_index_equal(res.categories, exp)
exp_cat = Categorical(["b", np.nan, "a"], categories=["b", "a"])
tm.assert_categorical_equal(res, exp_cat)

def test_unique_ordered(self):
# keep categories order when ordered=True
cat = Categorical(['b', 'a', 'b'], categories=['a', 'b'], ordered=True)
res = cat.unique()
exp_cat = Categorical(['b', 'a'], categories=['a', 'b'], ordered=True)
tm.assert_categorical_equal(res, exp_cat)

cat = Categorical(['c', 'b', 'a', 'a'], categories=['a', 'b', 'c'],
ordered=True)
res = cat.unique()
exp_cat = Categorical(['c', 'b', 'a'], categories=['a', 'b', 'c'],
ordered=True)
tm.assert_categorical_equal(res, exp_cat)

cat = Categorical(['b', 'a', 'a'], categories=['a', 'b', 'c'],
ordered=True)
res = cat.unique()
exp_cat = Categorical(['b', 'a'], categories=['a', 'b'], ordered=True)
tm.assert_categorical_equal(res, exp_cat)

cat = Categorical(['b', 'b', np.nan, 'a'], categories=['a', 'b', 'c'],
ordered=True)
res = cat.unique()
exp_cat = Categorical(['b', np.nan, 'a'], categories=['a', 'b'],
ordered=True)
tm.assert_categorical_equal(res, exp_cat)

def test_unique_index_series(self):
c = Categorical([3, 1, 2, 2, 1], categories=[3, 2, 1])
# Categorical.unique sorts categories by appearance order
# if ordered=False
exp = Categorical([3, 1, 2], categories=[3, 1, 2])
tm.assert_categorical_equal(c.unique(), exp)

tm.assert_index_equal(Index(c).unique(), Index(exp))
tm.assert_categorical_equal(Series(c).unique(), exp)

c = Categorical([1, 1, 2, 2], categories=[3, 2, 1])
exp = Categorical([1, 2], categories=[1, 2])
tm.assert_categorical_equal(c.unique(), exp)
tm.assert_index_equal(Index(c).unique(), Index(exp))
tm.assert_categorical_equal(Series(c).unique(), exp)

c = Categorical([3, 1, 2, 2, 1], categories=[3, 2, 1], ordered=True)
# Categorical.unique keeps categories order if ordered=True
exp = Categorical([3, 1, 2], categories=[3, 2, 1], ordered=True)
tm.assert_categorical_equal(c.unique(), exp)

tm.assert_index_equal(Index(c).unique(), Index(exp))
tm.assert_categorical_equal(Series(c).unique(), exp)

def test_shift(self):
# GH 9416
cat = Categorical(['a', 'b', 'c', 'd', 'a'])

# shift forward
sp1 = cat.shift(1)
xp1 = Categorical([np.nan, 'a', 'b', 'c', 'd'])
tm.assert_categorical_equal(sp1, xp1)
tm.assert_categorical_equal(cat[:-1], sp1[1:])

# shift back
sn2 = cat.shift(-2)
xp2 = Categorical(['c', 'd', 'a', np.nan, np.nan],
categories=['a', 'b', 'c', 'd'])
tm.assert_categorical_equal(sn2, xp2)
tm.assert_categorical_equal(cat[2:], sn2[:-2])

# shift by zero
tm.assert_categorical_equal(cat, cat.shift(0))

def test_nbytes(self):
cat = Categorical([1, 2, 3])
exp = 3 + 3 * 8 # 3 int8s for values + 3 int64s for categories
assert cat.nbytes == exp

def test_memory_usage(self):
cat = Categorical([1, 2, 3])

# .categories is an index, so we include the hashtable
assert 0 < cat.nbytes <= cat.memory_usage()
assert 0 < cat.nbytes <= cat.memory_usage(deep=True)

cat = Categorical(['foo', 'foo', 'bar'])
assert cat.memory_usage(deep=True) > cat.nbytes

if not PYPY:
# sys.getsizeof will call the .memory_usage with
# deep=True, and add on some GC overhead
diff = cat.memory_usage(deep=True) - sys.getsizeof(cat)
assert abs(diff) < 100

def test_map(self):
c = Categorical(list('ABABC'), categories=list('CBA'), ordered=True)
result = c.map(lambda x: x.lower())
exp = Categorical(list('ababc'), categories=list('cba'), ordered=True)
tm.assert_categorical_equal(result, exp)

c = Categorical(list('ABABC'), categories=list('ABC'), ordered=False)
result = c.map(lambda x: x.lower())
exp = Categorical(list('ababc'), categories=list('abc'), ordered=False)
tm.assert_categorical_equal(result, exp)

result = c.map(lambda x: 1)
# GH 12766: Return an index not an array
tm.assert_index_equal(result, Index(np.array([1] * 5, dtype=np.int64)))

def test_validate_inplace(self):
cat = Categorical(['A', 'B', 'B', 'C', 'A'])
invalid_values = [1, "True", [1, 2, 3], 5.0]

for value in invalid_values:
with pytest.raises(ValueError):
cat.set_ordered(value=True, inplace=value)

with pytest.raises(ValueError):
cat.as_ordered(inplace=value)

with pytest.raises(ValueError):
cat.as_unordered(inplace=value)

with pytest.raises(ValueError):
cat.set_categories(['X', 'Y', 'Z'], rename=True, inplace=value)

with pytest.raises(ValueError):
cat.rename_categories(['X', 'Y', 'Z'], inplace=value)

with pytest.raises(ValueError):
cat.reorder_categories(
['X', 'Y', 'Z'], ordered=True, inplace=value)

with pytest.raises(ValueError):
cat.add_categories(
new_categories=['D', 'E', 'F'], inplace=value)

with pytest.raises(ValueError):
cat.remove_categories(removals=['D', 'E', 'F'], inplace=value)

with pytest.raises(ValueError):
cat.remove_unused_categories(inplace=value)

with pytest.raises(ValueError):
cat.sort_values(inplace=value)

def test_repeat(self):
# GH10183
cat = Categorical(["a", "b"], categories=["a", "b"])
exp = Categorical(["a", "a", "b", "b"], categories=["a", "b"])
res = cat.repeat(2)
tm.assert_categorical_equal(res, exp)

def test_numpy_repeat(self):
cat = Categorical(["a", "b"], categories=["a", "b"])
exp = Categorical(["a", "a", "b", "b"], categories=["a", "b"])
tm.assert_categorical_equal(np.repeat(cat, 2), exp)

msg = "the 'axis' parameter is not supported"
tm.assert_raises_regex(ValueError, msg, np.repeat, cat, 2, axis=1)

def test_isna(self):
exp = np.array([False, False, True])
c = Categorical(["a", "b", np.nan])
res = c.isna()

tm.assert_numpy_array_equal(res, exp)
Loading

0 comments on commit 3395742

Please sign in to comment.