-
-
Notifications
You must be signed in to change notification settings - Fork 18.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
- Loading branch information
Showing
37 changed files
with
4,985 additions
and
4,843 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
# -*- coding: utf-8 -*- | ||
|
||
from pandas import Categorical | ||
|
||
|
||
class TestCategorical(object): | ||
|
||
def setup_method(self, method): | ||
self.factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], | ||
ordered=True) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,320 @@ | ||
# -*- coding: utf-8 -*- | ||
|
||
import pytest | ||
import sys | ||
|
||
import numpy as np | ||
|
||
import pandas.util.testing as tm | ||
from pandas import Categorical, Index, Series | ||
|
||
from pandas.compat import PYPY | ||
|
||
|
||
class TestCategoricalAnalytics(object): | ||
|
||
def test_min_max(self): | ||
|
||
# unordered cats have no min/max | ||
cat = Categorical(["a", "b", "c", "d"], ordered=False) | ||
pytest.raises(TypeError, lambda: cat.min()) | ||
pytest.raises(TypeError, lambda: cat.max()) | ||
|
||
cat = Categorical(["a", "b", "c", "d"], ordered=True) | ||
_min = cat.min() | ||
_max = cat.max() | ||
assert _min == "a" | ||
assert _max == "d" | ||
|
||
cat = Categorical(["a", "b", "c", "d"], | ||
categories=['d', 'c', 'b', 'a'], ordered=True) | ||
_min = cat.min() | ||
_max = cat.max() | ||
assert _min == "d" | ||
assert _max == "a" | ||
|
||
cat = Categorical([np.nan, "b", "c", np.nan], | ||
categories=['d', 'c', 'b', 'a'], ordered=True) | ||
_min = cat.min() | ||
_max = cat.max() | ||
assert np.isnan(_min) | ||
assert _max == "b" | ||
|
||
_min = cat.min(numeric_only=True) | ||
assert _min == "c" | ||
_max = cat.max(numeric_only=True) | ||
assert _max == "b" | ||
|
||
cat = Categorical([np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], | ||
ordered=True) | ||
_min = cat.min() | ||
_max = cat.max() | ||
assert np.isnan(_min) | ||
assert _max == 1 | ||
|
||
_min = cat.min(numeric_only=True) | ||
assert _min == 2 | ||
_max = cat.max(numeric_only=True) | ||
assert _max == 1 | ||
|
||
@pytest.mark.parametrize("values,categories,exp_mode", [ | ||
([1, 1, 2, 4, 5, 5, 5], [5, 4, 3, 2, 1], [5]), | ||
([1, 1, 1, 4, 5, 5, 5], [5, 4, 3, 2, 1], [5, 1]), | ||
([1, 2, 3, 4, 5], [5, 4, 3, 2, 1], [5, 4, 3, 2, 1]), | ||
([np.nan, np.nan, np.nan, 4, 5], [5, 4, 3, 2, 1], [5, 4]), | ||
([np.nan, np.nan, np.nan, 4, 5, 4], [5, 4, 3, 2, 1], [4]), | ||
([np.nan, np.nan, 4, 5, 4], [5, 4, 3, 2, 1], [4])]) | ||
def test_mode(self, values, categories, exp_mode): | ||
s = Categorical(values, categories=categories, ordered=True) | ||
res = s.mode() | ||
exp = Categorical(exp_mode, categories=categories, ordered=True) | ||
tm.assert_categorical_equal(res, exp) | ||
|
||
def test_searchsorted(self): | ||
# https://github.com/pandas-dev/pandas/issues/8420 | ||
# https://github.com/pandas-dev/pandas/issues/14522 | ||
|
||
c1 = Categorical(['cheese', 'milk', 'apple', 'bread', 'bread'], | ||
categories=['cheese', 'milk', 'apple', 'bread'], | ||
ordered=True) | ||
s1 = Series(c1) | ||
c2 = Categorical(['cheese', 'milk', 'apple', 'bread', 'bread'], | ||
categories=['cheese', 'milk', 'apple', 'bread'], | ||
ordered=False) | ||
s2 = Series(c2) | ||
|
||
# Searching for single item argument, side='left' (default) | ||
res_cat = c1.searchsorted('apple') | ||
res_ser = s1.searchsorted('apple') | ||
exp = np.array([2], dtype=np.intp) | ||
tm.assert_numpy_array_equal(res_cat, exp) | ||
tm.assert_numpy_array_equal(res_ser, exp) | ||
|
||
# Searching for single item array, side='left' (default) | ||
res_cat = c1.searchsorted(['bread']) | ||
res_ser = s1.searchsorted(['bread']) | ||
exp = np.array([3], dtype=np.intp) | ||
tm.assert_numpy_array_equal(res_cat, exp) | ||
tm.assert_numpy_array_equal(res_ser, exp) | ||
|
||
# Searching for several items array, side='right' | ||
res_cat = c1.searchsorted(['apple', 'bread'], side='right') | ||
res_ser = s1.searchsorted(['apple', 'bread'], side='right') | ||
exp = np.array([3, 5], dtype=np.intp) | ||
tm.assert_numpy_array_equal(res_cat, exp) | ||
tm.assert_numpy_array_equal(res_ser, exp) | ||
|
||
# Searching for a single value that is not from the Categorical | ||
pytest.raises(ValueError, lambda: c1.searchsorted('cucumber')) | ||
pytest.raises(ValueError, lambda: s1.searchsorted('cucumber')) | ||
|
||
# Searching for multiple values one of each is not from the Categorical | ||
pytest.raises(ValueError, | ||
lambda: c1.searchsorted(['bread', 'cucumber'])) | ||
pytest.raises(ValueError, | ||
lambda: s1.searchsorted(['bread', 'cucumber'])) | ||
|
||
# searchsorted call for unordered Categorical | ||
pytest.raises(ValueError, lambda: c2.searchsorted('apple')) | ||
pytest.raises(ValueError, lambda: s2.searchsorted('apple')) | ||
|
||
with tm.assert_produces_warning(FutureWarning): | ||
res = c1.searchsorted(v=['bread']) | ||
exp = np.array([3], dtype=np.intp) | ||
tm.assert_numpy_array_equal(res, exp) | ||
|
||
def test_unique(self): | ||
# categories are reordered based on value when ordered=False | ||
cat = Categorical(["a", "b"]) | ||
exp = Index(["a", "b"]) | ||
res = cat.unique() | ||
tm.assert_index_equal(res.categories, exp) | ||
tm.assert_categorical_equal(res, cat) | ||
|
||
cat = Categorical(["a", "b", "a", "a"], categories=["a", "b", "c"]) | ||
res = cat.unique() | ||
tm.assert_index_equal(res.categories, exp) | ||
tm.assert_categorical_equal(res, Categorical(exp)) | ||
|
||
cat = Categorical(["c", "a", "b", "a", "a"], | ||
categories=["a", "b", "c"]) | ||
exp = Index(["c", "a", "b"]) | ||
res = cat.unique() | ||
tm.assert_index_equal(res.categories, exp) | ||
exp_cat = Categorical(exp, categories=['c', 'a', 'b']) | ||
tm.assert_categorical_equal(res, exp_cat) | ||
|
||
# nan must be removed | ||
cat = Categorical(["b", np.nan, "b", np.nan, "a"], | ||
categories=["a", "b", "c"]) | ||
res = cat.unique() | ||
exp = Index(["b", "a"]) | ||
tm.assert_index_equal(res.categories, exp) | ||
exp_cat = Categorical(["b", np.nan, "a"], categories=["b", "a"]) | ||
tm.assert_categorical_equal(res, exp_cat) | ||
|
||
def test_unique_ordered(self): | ||
# keep categories order when ordered=True | ||
cat = Categorical(['b', 'a', 'b'], categories=['a', 'b'], ordered=True) | ||
res = cat.unique() | ||
exp_cat = Categorical(['b', 'a'], categories=['a', 'b'], ordered=True) | ||
tm.assert_categorical_equal(res, exp_cat) | ||
|
||
cat = Categorical(['c', 'b', 'a', 'a'], categories=['a', 'b', 'c'], | ||
ordered=True) | ||
res = cat.unique() | ||
exp_cat = Categorical(['c', 'b', 'a'], categories=['a', 'b', 'c'], | ||
ordered=True) | ||
tm.assert_categorical_equal(res, exp_cat) | ||
|
||
cat = Categorical(['b', 'a', 'a'], categories=['a', 'b', 'c'], | ||
ordered=True) | ||
res = cat.unique() | ||
exp_cat = Categorical(['b', 'a'], categories=['a', 'b'], ordered=True) | ||
tm.assert_categorical_equal(res, exp_cat) | ||
|
||
cat = Categorical(['b', 'b', np.nan, 'a'], categories=['a', 'b', 'c'], | ||
ordered=True) | ||
res = cat.unique() | ||
exp_cat = Categorical(['b', np.nan, 'a'], categories=['a', 'b'], | ||
ordered=True) | ||
tm.assert_categorical_equal(res, exp_cat) | ||
|
||
def test_unique_index_series(self): | ||
c = Categorical([3, 1, 2, 2, 1], categories=[3, 2, 1]) | ||
# Categorical.unique sorts categories by appearance order | ||
# if ordered=False | ||
exp = Categorical([3, 1, 2], categories=[3, 1, 2]) | ||
tm.assert_categorical_equal(c.unique(), exp) | ||
|
||
tm.assert_index_equal(Index(c).unique(), Index(exp)) | ||
tm.assert_categorical_equal(Series(c).unique(), exp) | ||
|
||
c = Categorical([1, 1, 2, 2], categories=[3, 2, 1]) | ||
exp = Categorical([1, 2], categories=[1, 2]) | ||
tm.assert_categorical_equal(c.unique(), exp) | ||
tm.assert_index_equal(Index(c).unique(), Index(exp)) | ||
tm.assert_categorical_equal(Series(c).unique(), exp) | ||
|
||
c = Categorical([3, 1, 2, 2, 1], categories=[3, 2, 1], ordered=True) | ||
# Categorical.unique keeps categories order if ordered=True | ||
exp = Categorical([3, 1, 2], categories=[3, 2, 1], ordered=True) | ||
tm.assert_categorical_equal(c.unique(), exp) | ||
|
||
tm.assert_index_equal(Index(c).unique(), Index(exp)) | ||
tm.assert_categorical_equal(Series(c).unique(), exp) | ||
|
||
def test_shift(self): | ||
# GH 9416 | ||
cat = Categorical(['a', 'b', 'c', 'd', 'a']) | ||
|
||
# shift forward | ||
sp1 = cat.shift(1) | ||
xp1 = Categorical([np.nan, 'a', 'b', 'c', 'd']) | ||
tm.assert_categorical_equal(sp1, xp1) | ||
tm.assert_categorical_equal(cat[:-1], sp1[1:]) | ||
|
||
# shift back | ||
sn2 = cat.shift(-2) | ||
xp2 = Categorical(['c', 'd', 'a', np.nan, np.nan], | ||
categories=['a', 'b', 'c', 'd']) | ||
tm.assert_categorical_equal(sn2, xp2) | ||
tm.assert_categorical_equal(cat[2:], sn2[:-2]) | ||
|
||
# shift by zero | ||
tm.assert_categorical_equal(cat, cat.shift(0)) | ||
|
||
def test_nbytes(self): | ||
cat = Categorical([1, 2, 3]) | ||
exp = 3 + 3 * 8 # 3 int8s for values + 3 int64s for categories | ||
assert cat.nbytes == exp | ||
|
||
def test_memory_usage(self): | ||
cat = Categorical([1, 2, 3]) | ||
|
||
# .categories is an index, so we include the hashtable | ||
assert 0 < cat.nbytes <= cat.memory_usage() | ||
assert 0 < cat.nbytes <= cat.memory_usage(deep=True) | ||
|
||
cat = Categorical(['foo', 'foo', 'bar']) | ||
assert cat.memory_usage(deep=True) > cat.nbytes | ||
|
||
if not PYPY: | ||
# sys.getsizeof will call the .memory_usage with | ||
# deep=True, and add on some GC overhead | ||
diff = cat.memory_usage(deep=True) - sys.getsizeof(cat) | ||
assert abs(diff) < 100 | ||
|
||
def test_map(self): | ||
c = Categorical(list('ABABC'), categories=list('CBA'), ordered=True) | ||
result = c.map(lambda x: x.lower()) | ||
exp = Categorical(list('ababc'), categories=list('cba'), ordered=True) | ||
tm.assert_categorical_equal(result, exp) | ||
|
||
c = Categorical(list('ABABC'), categories=list('ABC'), ordered=False) | ||
result = c.map(lambda x: x.lower()) | ||
exp = Categorical(list('ababc'), categories=list('abc'), ordered=False) | ||
tm.assert_categorical_equal(result, exp) | ||
|
||
result = c.map(lambda x: 1) | ||
# GH 12766: Return an index not an array | ||
tm.assert_index_equal(result, Index(np.array([1] * 5, dtype=np.int64))) | ||
|
||
def test_validate_inplace(self): | ||
cat = Categorical(['A', 'B', 'B', 'C', 'A']) | ||
invalid_values = [1, "True", [1, 2, 3], 5.0] | ||
|
||
for value in invalid_values: | ||
with pytest.raises(ValueError): | ||
cat.set_ordered(value=True, inplace=value) | ||
|
||
with pytest.raises(ValueError): | ||
cat.as_ordered(inplace=value) | ||
|
||
with pytest.raises(ValueError): | ||
cat.as_unordered(inplace=value) | ||
|
||
with pytest.raises(ValueError): | ||
cat.set_categories(['X', 'Y', 'Z'], rename=True, inplace=value) | ||
|
||
with pytest.raises(ValueError): | ||
cat.rename_categories(['X', 'Y', 'Z'], inplace=value) | ||
|
||
with pytest.raises(ValueError): | ||
cat.reorder_categories( | ||
['X', 'Y', 'Z'], ordered=True, inplace=value) | ||
|
||
with pytest.raises(ValueError): | ||
cat.add_categories( | ||
new_categories=['D', 'E', 'F'], inplace=value) | ||
|
||
with pytest.raises(ValueError): | ||
cat.remove_categories(removals=['D', 'E', 'F'], inplace=value) | ||
|
||
with pytest.raises(ValueError): | ||
cat.remove_unused_categories(inplace=value) | ||
|
||
with pytest.raises(ValueError): | ||
cat.sort_values(inplace=value) | ||
|
||
def test_repeat(self): | ||
# GH10183 | ||
cat = Categorical(["a", "b"], categories=["a", "b"]) | ||
exp = Categorical(["a", "a", "b", "b"], categories=["a", "b"]) | ||
res = cat.repeat(2) | ||
tm.assert_categorical_equal(res, exp) | ||
|
||
def test_numpy_repeat(self): | ||
cat = Categorical(["a", "b"], categories=["a", "b"]) | ||
exp = Categorical(["a", "a", "b", "b"], categories=["a", "b"]) | ||
tm.assert_categorical_equal(np.repeat(cat, 2), exp) | ||
|
||
msg = "the 'axis' parameter is not supported" | ||
tm.assert_raises_regex(ValueError, msg, np.repeat, cat, 2, axis=1) | ||
|
||
def test_isna(self): | ||
exp = np.array([False, False, True]) | ||
c = Categorical(["a", "b", np.nan]) | ||
res = c.isna() | ||
|
||
tm.assert_numpy_array_equal(res, exp) |
Oops, something went wrong.