Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add modules for deterministic total ordering derivation from partial ord #1335

Merged
merged 11 commits into from
Apr 25, 2022
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0

### Minor improvements & Bug Fixes

* [#1335](https://github.com/osmosis-labs/osmosis/pull/1335) Add utility for deriving total orderings from partial orderings.
* [#1308](https://github.com/osmosis-labs/osmosis/pull/1308) Make panics inside of epochs no longer chain halt by default.
* [#1286](https://github.com/osmosis-labs/osmosis/pull/1286) Fix release build scripts.
* [#1203](https://github.com/osmosis-labs/osmosis/pull/1203) cleanup Makefile and ci workflows
Expand Down
319 changes: 319 additions & 0 deletions osmoutils/partialord/internal/dag/dag.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,319 @@
package dag
p0mvn marked this conversation as resolved.
Show resolved Hide resolved

import (
"fmt"
"sort"
)

// Dag struct maintains a directed acyclic graph, using adjacency lists to track edges.
type Dag struct {
ValarDragon marked this conversation as resolved.
Show resolved Hide resolved
// there is a directed edge from u -> v, if directedEdgeList[u][v] = 1
// there is a directed edge from v -> u, if directedEdgeList[u][v] = -1
directedEdgeList []map[int]int8
ValarDragon marked this conversation as resolved.
Show resolved Hide resolved
nodeNameToId map[string]int
idToNodeNames map[int]string
}

func NewDag(nodes []string) Dag {
nodeNameToId := make(map[string]int, len(nodes))
idToNodeNames := make(map[int]string, len(nodes))
directedEdgeList := make([]map[int]int8, len(nodes))
for i, node := range nodes {
nodeNameToId[node] = i
idToNodeNames[i] = node
directedEdgeList[i] = map[int]int8{}
}
if len(nodeNameToId) != len(nodes) {
panic("provided multiple nodes with the same name")
}
return Dag{
directedEdgeList: directedEdgeList,
nodeNameToId: nodeNameToId,
idToNodeNames: idToNodeNames,
}
}

// Copy returns a new dag struct that is a copy of the original dag.
// Edges can be mutated in the copy, without altering the original.
func (dag Dag) Copy() Dag {
ValarDragon marked this conversation as resolved.
Show resolved Hide resolved
directedEdgeList := make([]map[int]int8, len(dag.nodeNameToId))
for i := 0; i < len(dag.nodeNameToId); i++ {
originalEdgeList := dag.directedEdgeList[i]
directedEdgeList[i] = make(map[int]int8, len(originalEdgeList))
for k, v := range originalEdgeList {
directedEdgeList[i][k] = v
}
}
// we re-use nodeNameToId and idToNodeNames as these are fixed at dag creation.
Comment on lines +39 to +47
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

What's the reason we iterate to copy Dag instead of directly using dag.directedEdgeList? Is that to ensure we deep copy edge list?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yeah, the topological sort algorithm used basically removes edges from every node marked as 'done', So we have to remove these edges from a copy.

More space efficient things can technically be done, but should never be important at the relevant sizes here.

return Dag{
directedEdgeList: directedEdgeList,
nodeNameToId: dag.nodeNameToId,
idToNodeNames: dag.idToNodeNames,
}
}

func (dag Dag) hasDirectedEdge(u, v int) bool {
uAdjacencyList := dag.directedEdgeList[u]
_, exists := uAdjacencyList[v]
return exists
}

// addEdge adds a directed edge from u -> v.
func (dag *Dag) addEdge(u, v int) error {
if u == v {
return fmt.Errorf("can't make self-edge")
}
if dag.hasDirectedEdge(v, u) {
return fmt.Errorf("dag has conflicting edge")
}
dag.directedEdgeList[u][v] = 1
dag.directedEdgeList[v][u] = -1
return nil
}

// replaceEdge adds a directed edge from u -> v.
// it removes any edge that may already exist between the two.
func (dag *Dag) replaceEdge(u, v int) error {
if u == v {
return fmt.Errorf("can't make self-edge")
}

dag.directedEdgeList[u][v] = 1
dag.directedEdgeList[v][u] = -1
return nil
}

// resetEdges deletes all edges directed to or from node `u`
func (dag *Dag) resetEdges(u int) {
edges := dag.directedEdgeList[u]
for v := range edges {
delete(dag.directedEdgeList[v], u)
}
dag.directedEdgeList[u] = map[int]int8{}
}

// deleteEdge deletes edges between u and v.
func (dag *Dag) deleteEdge(u, v int) {
delete(dag.directedEdgeList[u], v)
delete(dag.directedEdgeList[v], u)
}

ValarDragon marked this conversation as resolved.
Show resolved Hide resolved
func (dag *Dag) AddEdge(u, v string) error {
uIndex, uExists := dag.nodeNameToId[u]
vIndex, vExists := dag.nodeNameToId[v]
if !uExists || !vExists {
return fmt.Errorf("one of %s, %s does not exist in dag", u, v)
}
return dag.addEdge(uIndex, vIndex)
}

// ReplaceEdge adds a directed edge from u -> v.
// it removes any edge that may already exist between the two.
func (dag *Dag) ReplaceEdge(u, v string) error {
uIndex, uExists := dag.nodeNameToId[u]
vIndex, vExists := dag.nodeNameToId[v]
if !uExists || !vExists {
return fmt.Errorf("one of %s, %s does not exist in dag", u, v)
}
return dag.replaceEdge(uIndex, vIndex)
}

// AddFirstElements sets the provided elements to be first in all orderings.
// So if were making an ordering over {A, B, C, D, E}, and elems provided is {D, B, A}
// then we are guaranteed that the total ordering will begin with {D, B, A}
func (dag *Dag) AddFirstElements(nodes ...string) error {
nodeIds, err := dag.namesToIds(nodes)
if err != nil {
return err
}

return dag.addFirst(nodeIds)
}

func (dag *Dag) addFirst(nodes []int) error {
p0mvn marked this conversation as resolved.
Show resolved Hide resolved
nodeMap := map[int]bool{}
p0mvn marked this conversation as resolved.
Show resolved Hide resolved
for i := 0; i < len(nodes); i++ {
nodeMap[nodes[i]] = true
}
// First we add an edge from nodes[-1] to every node in the graph aside from the provided first nodes.
// then we make nodes[-1] depend on nodes[-2], etc.
// We also clear all other edges from nodes[-2], to override previous settings.
lastOfFirstNodes := nodes[len(nodes)-1]
for i := 0; i < len(dag.nodeNameToId); i++ {
// skip any node in the 'first set'
_, inMap := nodeMap[i]
if inMap {
continue
}
// We make everything on `lastOfFirstNodes`, and therefore have an edge from `lastOfFirstNodes` to it
err := dag.replaceEdge(lastOfFirstNodes, i)
// can't happen by above check
if err != nil {
return err
}
}

// Make nodes[i+1] depend on nodes[i]
for i := len(nodes) - 2; i >= 0; i-- {
dag.resetEdges(nodes[i])
err := dag.replaceEdge(nodes[i], nodes[i+1])
// can't happen by above check
if err != nil {
return err
}
}
return nil
}

// AddLastElements sets the provided elements to be last in all orderings.
// So if were making an ordering over {A, B, C, D, E}, and elems provided is {D, B, A}
// then we are guaranteed that the total ordering will end with {D, B, A}
func (dag *Dag) AddLastElements(nodes ...string) error {
nodeIds, err := dag.namesToIds(nodes)
if err != nil {
return err
}

return dag.addLast(nodeIds)
}

func (dag *Dag) addLast(nodes []int) error {
nodeMap := map[int]bool{}
p0mvn marked this conversation as resolved.
Show resolved Hide resolved
for i := 0; i < len(nodes); i++ {
nodeMap[nodes[i]] = true
}
// First we add an edge from every node in the graph aside from the provided last nodes, to nodes[0]
// then we make nodes[1] depend on nodes[0], etc.
// We also clear all other edges from nodes[1], to override previous settings.
firstOfLastNodes := nodes[0]
for i := 0; i < len(dag.nodeNameToId); i++ {
// skip any node in the 'last set'
_, inMap := nodeMap[i]
if inMap {
continue
}
// We make `firstOfLastNodes` depend on every node, and therefore have an edge from each node to `firstOfLastNodes`
err := dag.replaceEdge(i, firstOfLastNodes)
// can't happen by above check
if err != nil {
return err
}
}

// Make nodes[i] depend on nodes[i-1], and clear all other edges from nodes[i]
for i := 1; i < len(nodes); i++ {
dag.resetEdges(nodes[i])
err := dag.replaceEdge(nodes[i-1], nodes[i])
// can't happen by above check
if err != nil {
return err
}
}
return nil
}

func (dag Dag) hasEdges() bool {
for _, m := range dag.directedEdgeList {
if len(m) > 0 {
return true
}
}
return false
}

func (dag *Dag) namesToIds(names []string) ([]int, error) {
nodeIds := []int{}
for _, name := range names {
nodeIndex, nodeExists := dag.nodeNameToId[name]
if !nodeExists {
return []int{}, fmt.Errorf("%s does not exist in dag", name)
}
nodeIds = append(nodeIds, nodeIndex)
}
return nodeIds, nil
}

func (dag Dag) idsToNames(ids []int) []string {
sortedNames := make([]string, 0, len(ids))
for i := 0; i < len(dag.nodeNameToId); i++ {
id := ids[i]
sortedNames = append(sortedNames, dag.idToNodeNames[id])
}
return sortedNames
}

func (dag Dag) hasIncomingEdge(u int) bool {
adjacencyList := dag.directedEdgeList[u]
for _, v := range adjacencyList {
if v == -1 {
return true
}
}
return false
}

// returns nodes with no incoming edges.
func (dag *Dag) topologicalTopLevelNodes() []int {
topLevelNodes := []int{}

for i := 0; i < len(dag.nodeNameToId); i++ {
if !dag.hasIncomingEdge(i) {
topLevelNodes = append(topLevelNodes, i)
}
}

return topLevelNodes
}

// Returns a Topological Sort of the DAG, using Kahn's algorithm.
// https://en.wikipedia.org/wiki/Topological_sorting#Kahn's_algorithm
func (dag Dag) TopologicalSort() []string {
// G is the mutable graph we work on, which we remove edges from.
G := dag.Copy()
// L in pseudocode
sortedIDs := make([]int, 0, len(dag.nodeNameToId))
topLevelNodes := dag.topologicalTopLevelNodes()

// while len(topLevelNodes) != 0
p0mvn marked this conversation as resolved.
Show resolved Hide resolved
for {
if len(topLevelNodes) == 0 {
break
}
// pop a node `n`` off of topLevelNodes
n := topLevelNodes[0]
p0mvn marked this conversation as resolved.
Show resolved Hide resolved
topLevelNodes = topLevelNodes[1:]
// add it to the sorted list
sortedIDs = append(sortedIDs, n)
nEdgeList := G.directedEdgeList[n]
p0mvn marked this conversation as resolved.
Show resolved Hide resolved

// normally we'd do map iteration, but because we need cross-machine determinism,
// we gather all the nodes M for which there is an edge n -> m, sort that list,
// and then iterate over it.
nodesM := make([]int, 0, len(nEdgeList))
for m, direction := range nEdgeList {
if direction != 1 {
panic("dag: topological sort correctness error. " +
"Popped node n was expected to have no incoming edges")
}
nodesM = append(nodesM, m)
}

sort.Ints(nodesM)

for _, m := range nodesM {
// remove edge from n -> m
G.deleteEdge(n, m)
// if m has no incomingEdges, add to topLevelNodes
if !G.hasIncomingEdge(m) {
topLevelNodes = append(topLevelNodes, m)
}
}
}

if G.hasEdges() {
fmt.Println(G)
panic("dag: invalid construction, attempted to topologically sort a tree that is not a dag. A cycle exists")
}

return dag.idsToNames(sortedIDs)
}
Loading