-
Notifications
You must be signed in to change notification settings - Fork 128
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add CHLO decomposition pipeline and new interpreter check calls (#2439)
These are changes in preparation for refreshing all of `testdata` and adding CHLO-based testdata files. - Add more check ops to supported custom_calls in translate -- `@check.expect_close/almost_equal/check_eq` - Add `--chlo-pre-serialization-pipeline` to be run on programs with CHLO ops to decompose them along with their shape computation to StableHLO ops. Note: This is based on #2438 for the changes to CheckOps in that PR.
- Loading branch information
Showing
7 changed files
with
145 additions
and
81 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
// RUN: stablehlo-opt --chlo-pre-serialization-pipeline -inline %s | stablehlo-translate --interpret | ||
// RUN: stablehlo-opt --chlo-pre-serialization-pipeline %s | stablehlo-translate --serialize --target=current | stablehlo-translate --deserialize | stablehlo-opt > %t.0 | ||
// RUN: stablehlo-opt --chlo-pre-serialization-pipeline %s > %t.1 | ||
// RUN: diff %t.0 %t.1 | ||
|
||
module @jit_main attributes {mhlo.num_partitions = 1 : i32, mhlo.num_replicas = 1 : i32} { | ||
func.func public @main() -> (tensor<20x20xf32> {jax.result_info = "", mhlo.layout_mode = "default"}) { | ||
%0 = call @inputs() : () -> tensor<20x20xf32> | ||
%1 = call @expected() : () -> tensor<20x20xf32> | ||
%2 = chlo.sinh %0 : tensor<20x20xf32> -> tensor<20x20xf32> | ||
stablehlo.custom_call @check.expect_almost_eq(%2, %1) {has_side_effect = true} : (tensor<20x20xf32>, tensor<20x20xf32>) -> () | ||
return %2 : tensor<20x20xf32> | ||
} | ||
func.func private @inputs() -> (tensor<20x20xf32> {mhlo.layout_mode = "default"}) { | ||
%cst = stablehlo.constant dense<"0x8058843F8EC81BBF85E729408B75EBBE7417C23F584AA6BE030463BF300BA740131FA1C03EB377BE5F89ABC00369A7404DF865BF5142A0C0DDC3C8BF78D5663F662219C0541752C0A14F9EC047AC533E4F13293FFC9C01C0113B944029DC98BF70CA8340CE98953E07701F404BD25CBF396BF2BF15E1B9C0CC6923400ABC373EB8F9494065BF90400FDB3340ABF3B63F9D2C47408E651040C4A7203F89F74DBF84E678C020A709C08386534043E7D1BF0F7B93C0CD034E40084DC63FBE25DBC0AB4679C030D0F6BEE6C984C060445BC045A6E83E98E70BC1203918C0811F6BBF92D6B0BECE943FC022A41740C47902C09837F73E9EEC6940859E22C0C101233FC15A9BBF04F801C0A9F28ABF98560C402320823FBA33A9BFE62708C0A5EE0B40250BEEBF699559C09514283F1076A140989F9FBFAA1D4240FDFD5FC007B291BC2B3A30C02F226CBFBCD520BFD759C93F43AC04417E0ACDC0AB2287C0AAA8CD3E7736203ED6919EC09DCB2740C7B1B2C0188052C0819EE8C0F7A3B13F1D5DA940847901C06FF6013EB413C040EE3E0EC0E1BC0640F1F050C06F68B2BF5B33C6C0AEFC62C0EF2A48C026211640754B023E5DF669C03571CB3F4DA566C064E6463E971AC0BF79ED91403E4723C0924F64C0B2DC47C0BE393C3F44A108C0934CF53E70CBAC40BF14C93F4B97BEBEDA92CF3FFCE30EC0979D61BD086B533F94AC413FA8D8B6C081240B404149A6C01A6C65BE40A484C0CC4E804008FCA040F544A4BF7D05BEBF8EF94040A99FFDBF2DD445C018725A40E6AD164094428140BF263D40C44FD33EB09C1C40DFF99A3F1EDB9CBF1E3E1E400E7AD44021131DC006EF59400726F13E3A21D63ED9E143C08F8662BF1EFC5040856B9C40CDD461BF16DFB33F6C645940D8C84EBFC3C5FE3F50316C3F04813ABF0E620B41E1652EC0F27001C003C170BF71AE034021DC2FC015B662C01D8FA3BF22056E407861FABEB73188C0F51B05C0ECCDE7BF82500A3FB0ABAD3FC01F093F3F880F402ABC7EC058DEE4C0C90CEE405F36A63F50BB773FDFB50E40DF165940F9E0C13E8DC5CB3E644C4CC0E4E007BF06A9534050065EBE8008BDBF4232D8BFC6A14240B1342740C8BAA53E5D49833F8C0984BF7E8308C04D84C6BF6CE8E03FC0AA994068B78F4046EB5C40E63FFE3FE8EA3C3FBF9459C090974FBFC7041A4084C83240BD4AF43D05E236C0EBB072408B40B23F52B61DC08317AFC01876F73FAD001EC01261DDC007356040AED0614064B695401880863F9FB9943F4F8D6A3F218842409020B93FB9BDC73F65E1463F96E6F53FBBAF103FCC5D64BF343A9740046B7ABFA58D24C0C2AF5040DB9F354042AD5CBF9C4A4BC0AFDC8440EED40440A8CE343F7EC4E03F9FF8C64015B227C003B98F402539113F060725C09529A6C07E1B5540140B7640CFB88C3FE9D549BFE61429407A8812C01BE5FC3F92D40740FE12B8C02B20A23F82795C40D3393DC020871CC00ABF0940422633BF3974DCBFAE5811C0CE1E37C0DA2732BE54A2023E54CCF93E2E4B45C0BCE1893F274E49C09B0E1BC03C7FB9BF5B7F0840D2EB49BF43A0FF3ECBA79C3F313A88C05B1A1FC0C6D43A3FA90B1CC1B8E513C055418B40A20398409285924021CCF23EBB79D6BF042A153F2451C03F245099403B74FC3F85BE06C07E62F8BFA851AD40632402BFD310B6BF47C99440CD2872C063E764C05FBDB1BFB6745EBF434F6040C3D026BD62D8004152A69E3FD346E5BFB1CE18BE479A52BD69A4A43F581466404765BF3F241979C06F6DBAC08DCD143F93460DBE8A839ABFB16A4F3FBED4A73F03DE4DC0C25605C0C7143940615033C048C7A1C0079224C1CA111840BA4B07BF993489C043024F40C73279C02EEB08403F2E3BC0F1884F3F60E3423FA27DA7C0B4ED37C0824091BFF96E85C06B16013F3749E43EDC8D9CC05281E03F190386C0BFB9B9BFE859053FC0D4EC3FC9F19AC0D0BDAF3FC5CCB9C0FE434140441D85400465EFBF0DF0FEBF57842240750F4B4036EF0640F7D4743F18DA9DBFC7598B3EBB4CCFBFA01DAABF9C8880BD3CC86DC0587395C079A0CC3FAB0D514034EAF740E03CA1BD2BE402C07ABC5A4029BC90BF278A5FC0CE6A8B3F0E469340F9D355C0F54F1B40CE4A3140B8C887402B5983C0D0836CBF8D9041BFFB7921C05B83E2BF511C874018C627407FFE90C078B4813E477C05408FC88840EA9D4B401551DBBF7C4656BEBE40C840B2B59740A583CC3E"> : tensor<20x20xf32> | ||
return %cst : tensor<20x20xf32> | ||
} | ||
func.func private @expected() -> (tensor<20x20xf32> {mhlo.layout_mode = "default"}) { | ||
%cst = stablehlo.constant dense<"0x32389D3FE09325BF4D6BE240CED8F3BE9AC00A40BA3AA9BE04FB80BF3EF3B84222B399C2741F7ABEA6D4D4C2AB14BB420E1683BFE09C95C23FE912C089B4833F55A1ADC00DE054C1A6C68CC2002F553E51A3353F40436EC05B764D42D8DFBFBF1BCBF54108BC973EBEE3BF40FD3D79BFD8D44FC07D9826C33D5ACC40D4B8383E37723B41B1443842306E044120EDFB3F9563334159129740FE682B3F10EB64BF3661C3C1E59B87C09AB659415FBC1EC0A2B348C287B3474169DA0F402795EBC3DB87C4C1F23D00BF4495FDC161C775C110BDF03E8E0944C54C22ABC00DCD86BF0660B4BE4A3C1FC1CC8EA940E39B71C0C877003FB7939A4145CDC9C0543F2E3FF767C4BF1AA36FC0F1E3A7BF93938D40FDB9993FD5F7DEBF006384C08DA88C40A18448C06B626FC1566B343F35579B42DB55CCBF36B32541225384C1FEB391BC2D27FAC0268987BF54A02BBF66A513408980F944259997C3AA7108C2E43BD33E00DE203E1FEB8DC25E01DB40881705C39E3E56C1A87333C40D6AF03FA6DBC642ABBA6DC0D24F023EEB324A435BF791C0B5668140DA1251C1370DF2BFD6D774C3E5AC8AC1D33436C17587A54088A5023E4BAB9AC1884B1640E0D892C12B27483E676508C00D313F42ADEACBC013948DC1C15535C12AA64D3F376685C0A5CAFE3E765DDD429E4E1340F105C3BE94A51B40A47A93C0CCBA61BD8B486C3F60AF543FE68717C3ABE38A40779FB4C2AE5867BE756BFCC14C6EDC412A0B99423C39D5BF7FF605C01CC222414FB063C064A42FC149A37241CCFBA640EA17E341CB451941A45CD93E317CB740BEB6C33F682BC7BF614ABC401141BF431CD6B8C046B37041EE29FA3E456DDC3EB25B2AC107A280BF7B3751416DB28442242480BFB932F53F0DAB6E41240466BF18D265402C94873F08724BBFC6BF3D45CD0BF3C0B5996DC036EC8ABF6C5C7640ACB5F8C0FF138AC1C4D8D3BF56CEA441793D02BF35090DC2F4197CC0197E3EC08A24113FD014E83F9BC60F3FDFFF94402D0BD6C1C69A1FC4D5A45444FE05D93FAF1F903F0E0E9340E2896D41A88BC63EA431D13E3F6642C156590EBF712C5A41B3C45FBE14D204C0765827C03A0C2741CEF9D8408FA3A83E1F8C9B3F42BB9CBF742685C0731E10C0C5EF3340838373426B6C324203387C4116D964409B894E3FEF5F6FC1581A67BF1A16B040B336024124DFF43DF4E30AC1614CB141EEB7F13FC9B6BAC04CD7EDC2CA8F58405D93BBC06699FCC355C58441B02788419D33574299A7A03FB385B83FFA62863F0AC92641F661004044A21140887F5B3F13D355406683183FECF081BFD7A261428C2792BFD111D0C0B63D5041022B0841520A79BFB85A3FC15F2AFE41E6F97A40F837443F31BA334084CF7A4323A9DAC05F7532427023193F88A2D1C007EDB3C2222D5F4182D7BA4126D5AA3FD4675FBF887FDF40CB4F9CC08B5862401BB2834058751DC39716D13F52787A41C27319C17A3DB7C0FECF87404D2242BF1D662DC0426199C0FB680BC1480E33BE1CFD023ED6E9013F6C2C2EC14523A63F847C39C16F03B3C032CC00C09A1D8540EA845FBF8830053F8ACCC63F992E0DC2FFDFBEC00FDD4B3F486606C69EBF9FC0DE321B42FA4067427CC642420E00FC3EB2F324C0BBBF1D3FA8A50840B3D5704277896140206A81C04C325AC0A005E14214D207BFE1F9F9BF980F51427AD4AFC103E68EC120A0F0BF45877BBFE5FB844191DC26BDB56AC444CE81CA3F9D8F3AC0086019BE07B252BDEDF2D53F3F8D91418490074021FCC3C17B7929C329531D3F6AB90DBEE1DEC2BFE8DD663F1E3ADC3F5E3D47C157097DC086C60F415A4E03C178E39CC21AFA64C66AB7AA40C1AE0DBFE09011C245D64A41C34AC4C1FF0486406C9914C1A506673F0E44563F628DBBC27C310DC1FB7EB2BFA75F01C2C4A0063FE8ECEB3E244185C22B56334040BC03C2FF0D01C0D1760B3F82884640DD6E7DC25266EC3FDD2E26C3C0802341CE16004241C04AC0F52066C0C279C94090A93E41B2CF814015F38D3F9204C9BFD7138D3E7B491BC017CFE0BF379E80BDA131A4C17B7255C237D017400D71514173B690448767A1BDBC3C73C08BBE73413E9CB1BF0B6483C164AAA83F35684742BBB561C17DBDB3406B62FE40373D0B429A6AF2C14BD087BFF38A54BF832FC6C0895836C09556084248EEDA408AB139C2C418833E84A27D4075A80F424C55404173C32BC0AED757BEBF878243551065420CFFD13E"> : tensor<20x20xf32> | ||
return %cst : tensor<20x20xf32> | ||
} | ||
} |
Oops, something went wrong.