Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix tiling test #3637

Merged
merged 2 commits into from
Jun 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions src/otx/core/data/dataset/tile.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,7 @@ class OTXTileTransform(Tile):
extractor (DmDataset): Dataset subset to extract tiles from.
tile_size (tuple[int, int]): Tile size.
overlap (tuple[float, float]): Overlap ratio.
Overlap values are clipped between 0 and 0.9 to ensure the stride is not too small.
threshold_drop_ann (float): Threshold to drop annotations.
"""

Expand All @@ -74,6 +75,8 @@ def __init__(
overlap: tuple[float, float],
threshold_drop_ann: float,
) -> None:
# NOTE: clip overlap to [0, 0.9]
overlap = max(0, min(overlap[0], 0.9)), max(0, min(overlap[1], 0.9))
super().__init__(
extractor,
(0, 0),
Expand Down
4 changes: 2 additions & 2 deletions src/otx/core/data/tile_adaptor.py
Original file line number Diff line number Diff line change
Expand Up @@ -173,8 +173,8 @@ def adapt_tile_config(tile_config: TileConfig, dataset: Dataset) -> None:

if tile_overlap >= 0.9:
# Use the average object area if the tile overlap is too large to prevent 0 stride.
tile_overlap = avg_size / tile_size
log.info(f"----> (too big) tile_overlap: {avg_size} / {tile_size} = {tile_overlap}")
tile_overlap = min(avg_size / tile_size, 0.9)
log.info(f"----> (too big) tile_overlap: {avg_size} / {tile_size} = min[{tile_overlap}, 0.9]")

# TODO(Eugene): how to validate lower/upper_bound? dataclass? pydantic?
# https://github.com/openvinotoolkit/training_extensions/pull/2903
Expand Down
38 changes: 18 additions & 20 deletions tests/unit/core/data/test_tiling.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@
from otx.core.model.detection import OTXDetectionModel
from otx.core.model.instance_segmentation import OTXInstanceSegModel
from otx.core.types.task import OTXTaskType
from otx.core.types.transformer_libs import TransformLibType
from torchvision import tv_tensors

from tests.test_helpers import generate_random_bboxes
Expand All @@ -39,12 +40,12 @@ def mock_otx_det_model(self) -> OTXDetectionModel:
return create_autospec(OTXDetectionModel)

@pytest.fixture()
def fxt_mmcv_det_transform_config(self) -> list[DictConfig]:
mmdet_base = OmegaConf.load("src/otx/recipe/_base_/data/mmdet_base.yaml")
def fxt_tv_det_transform_config(self) -> list[DictConfig]:
mmdet_base = OmegaConf.load("src/otx/recipe/_base_/data/torchvision_base.yaml")
return mmdet_base.config.train_subset.transforms

@pytest.fixture()
def fxt_det_data_config(self, fxt_mmcv_det_transform_config) -> OTXDataModule:
def fxt_det_data_config(self, fxt_tv_det_transform_config) -> OTXDataModule:
data_root = Path(__file__).parent.parent.parent.parent / "assets" / "car_tree_bug"

batch_size = 8
Expand All @@ -56,35 +57,31 @@ def fxt_det_data_config(self, fxt_mmcv_det_transform_config) -> OTXDataModule:
subset_name="train",
batch_size=batch_size,
num_workers=num_workers,
transform_lib_type="MMDET",
transforms=fxt_mmcv_det_transform_config,
transform_lib_type=TransformLibType.TORCHVISION,
transforms=fxt_tv_det_transform_config,
),
val_subset=SubsetConfig(
subset_name="val",
batch_size=batch_size,
num_workers=num_workers,
transform_lib_type="MMDET",
transforms=fxt_mmcv_det_transform_config,
transform_lib_type=TransformLibType.TORCHVISION,
transforms=fxt_tv_det_transform_config,
),
test_subset=SubsetConfig(
subset_name="test",
batch_size=batch_size,
num_workers=num_workers,
transform_lib_type="MMDET",
transforms=fxt_mmcv_det_transform_config,
transform_lib_type=TransformLibType.TORCHVISION,
transforms=fxt_tv_det_transform_config,
),
tile_config=TileConfig(),
vpm_config=VisualPromptingConfig(),
)

@pytest.fixture()
def fxt_instseg_data_config(self, fxt_mmcv_det_transform_config) -> OTXDataModule:
def fxt_instseg_data_config(self, fxt_tv_det_transform_config) -> OTXDataModule:
data_root = Path(__file__).parent.parent.parent.parent / "assets" / "car_tree_bug"

for transform in fxt_mmcv_det_transform_config:
if transform.type == "LoadAnnotations":
transform.with_mask = True

batch_size = 8
num_workers = 0
return DataModuleConfig(
Expand All @@ -94,22 +91,22 @@ def fxt_instseg_data_config(self, fxt_mmcv_det_transform_config) -> OTXDataModul
subset_name="train",
batch_size=batch_size,
num_workers=num_workers,
transform_lib_type="MMDET",
transforms=fxt_mmcv_det_transform_config,
transform_lib_type=TransformLibType.TORCHVISION,
transforms=fxt_tv_det_transform_config,
),
val_subset=SubsetConfig(
subset_name="val",
batch_size=batch_size,
num_workers=num_workers,
transform_lib_type="MMDET",
transforms=fxt_mmcv_det_transform_config,
transform_lib_type=TransformLibType.TORCHVISION,
transforms=fxt_tv_det_transform_config,
),
test_subset=SubsetConfig(
subset_name="test",
batch_size=batch_size,
num_workers=num_workers,
transform_lib_type="MMDET",
transforms=fxt_mmcv_det_transform_config,
transform_lib_type=TransformLibType.TORCHVISION,
transforms=fxt_tv_det_transform_config,
),
tile_config=TileConfig(),
vpm_config=VisualPromptingConfig(),
Expand Down Expand Up @@ -239,6 +236,7 @@ def test_tile_transform(self):
rng = np.random.default_rng()
tile_size = rng.integers(low=100, high=500, size=(2,))
overlap = rng.random(2)
overlap = overlap.clip(0, 0.9)
threshold_drop_ann = rng.random()
tiled_dataset = DmDataset.import_from("tests/assets/car_tree_bug", format="coco_instances")
tiled_dataset.transform(
Expand Down
Loading