Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Optimize data preprocessing time and enhance overall performance in semantic segmentation #2020

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@ All notable changes to this project will be documented in this file.
- Extend OTX explain CLI (<https://github.com/openvinotoolkit/training_extensions/pull/1941>)
- Segmentation task refactoring (<https://github.com/openvinotoolkit/training_extensions/pull/1977>)
- Action task refactoring (<https://github.com/openvinotoolkit/training_extensions/pull/1993>)
- Optimize data preprocessing time and enhance overall performance in semantic segmentation (<https://github.com/openvinotoolkit/training_extensions/pull/2020>)

### Bug fixes

Expand Down
16 changes: 10 additions & 6 deletions otx/algorithms/segmentation/adapters/mmseg/configurer.py
Original file line number Diff line number Diff line change
Expand Up @@ -185,7 +185,6 @@ def configure_task(
"""Patch config to support training algorithm."""
if "task_adapt" in cfg:
logger.info(f"task config!!!!: training={training}")
cfg["task_adapt"].get("op", "REPLACE")
eunwoosh marked this conversation as resolved.
Show resolved Hide resolved

# Task classes
self.configure_classes(cfg)
Expand Down Expand Up @@ -421,6 +420,8 @@ def configure_samples_per_gpu(self, cfg: Config, subset: str) -> None:
# batch size of 1 is a runtime error for training batch normalization layer
if subset in ("train", "unlabeled") and dataset_len % samples_per_gpu == 1:
dataloader_cfg["drop_last"] = True
else:
dataloader_cfg["drop_last"] = False

cfg.data[f"{subset}_dataloader"] = dataloader_cfg

Expand Down Expand Up @@ -501,18 +502,21 @@ def configure_task(self, cfg: ConfigDict, training: bool) -> None:
"""Patch config to support incremental learning."""
super().configure_task(cfg, training)

new_classes: List[str] = np.setdiff1d(self.model_classes, self.org_model_classes).tolist()

# Check if new classes are added
has_new_class: bool = len(new_classes) > 0
# TODO: Revisit this part when removing bg label -> it should be 1 because of 'background' label
if len(set(self.org_model_classes) & set(self.model_classes)) == 1 or set(self.org_model_classes) == set(
eunwoosh marked this conversation as resolved.
Show resolved Hide resolved
self.model_classes
):
is_cls_incr = False
else:
is_cls_incr = True

# Update TaskAdaptHook (use incremental sampler)
task_adapt_hook = ConfigDict(
type="TaskAdaptHook",
src_classes=self.org_model_classes,
dst_classes=self.model_classes,
model_type=cfg.model.type,
sampler_flag=has_new_class,
sampler_flag=is_cls_incr,
efficient_mode=cfg["task_adapt"].get("efficient_mode", False),
)
update_or_add_custom_hook(cfg, task_adapt_hook)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@ def build_nncf_segmentor( # noqa: C901 # pylint: disable=too-many-locals,too-m
device: Union[str, torch.device] = "cpu",
cfg_options: Optional[Union[Config, ConfigDict]] = None,
distributed=False,
**kwargs
):
"""A function to build NNCF wrapped mmcls model."""

Expand Down
2 changes: 1 addition & 1 deletion otx/algorithms/segmentation/adapters/mmseg/task.py
Original file line number Diff line number Diff line change
Expand Up @@ -352,7 +352,7 @@ def _train_model(
)

# Model
model = self.build_model(cfg, fp16=cfg.get("fp16", False))
model = self.build_model(cfg, fp16=cfg.get("fp16", False), is_training=self._is_training)
model.train()
model.CLASSES = target_classes

Expand Down
8 changes: 6 additions & 2 deletions otx/algorithms/segmentation/adapters/mmseg/utils/builder.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@ def build_segmentor(
device: Union[str, torch.device] = "cpu",
cfg_options: Optional[Union[Config, ConfigDict]] = None,
from_scratch: bool = False,
is_training: bool = False,
) -> torch.nn.Module:
"""A builder function for mmseg model.

Expand All @@ -58,9 +59,12 @@ def build_segmentor(
model = origin_build_segmentor(model_cfg, train_cfg=train_cfg, test_cfg=test_cfg)
model = model.to(device)

checkpoint = checkpoint if checkpoint else config.pop("load_from", None)
checkpoint = checkpoint if checkpoint else config.get("load_from", None)
config.load_from = checkpoint
supersoob marked this conversation as resolved.
Show resolved Hide resolved

if checkpoint is not None and not from_scratch:
load_checkpoint(model, checkpoint, map_location=device)
config.load_from = checkpoint
if is_training is True:
config.load_from = None # To prevent the repeated ckpt loading in mmseg.apis.train_segmentor

return model
Original file line number Diff line number Diff line change
Expand Up @@ -26,15 +26,6 @@
dict(type="Resize", img_scale=__img_scale, ratio_range=(0.5, 2.0), keep_ratio=False),
dict(type="RandomCrop", crop_size=__crop_size, cat_max_ratio=0.75),
dict(type="RandomFlip", prob=0.5, direction="horizontal"),
dict(
type="MaskCompose",
prob=0.5,
lambda_limits=(4, 16),
keep_original=False,
transforms=[
dict(type="PhotoMetricDistortion"),
],
),
dict(type="Normalize", **__img_norm_cfg),
dict(type="Pad", size=__crop_size, pad_val=0, seg_pad_val=255),
dict(type="RandomRotate", prob=0.5, degree=30, pad_val=0, seg_pad_val=255),
Expand Down
9 changes: 0 additions & 9 deletions otx/recipes/stages/_base_/data/pipelines/incr_seg.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,15 +8,6 @@
dict(type="Resize", img_scale=__img_scale, ratio_range=(0.5, 2.0), keep_ratio=False),
dict(type="RandomCrop", crop_size=__crop_size, cat_max_ratio=0.75),
dict(type="RandomFlip", prob=0.5, direction="horizontal"),
dict(
type="MaskCompose",
prob=0.5,
lambda_limits=(4, 16),
keep_original=False,
transforms=[
dict(type="PhotoMetricDistortion"),
],
),
dict(type="Normalize", **__img_norm_cfg),
dict(type="Pad", size=__crop_size, pad_val=0, seg_pad_val=255),
dict(type="RandomRotate", prob=0.5, degree=30, pad_val=0, seg_pad_val=255),
Expand Down