Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Anomaly Task] Fix non deterministic + sample.py #1118

Merged
merged 3 commits into from
May 31, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -184,7 +184,7 @@ def create_task_annotations(task: str, data_path: str, annotation_path: str) ->
Raises:
ValueError: When task is not classification, detection or segmentation.
"""
annotation_path = os.path.join(data_path, task)
annotation_path = os.path.join(annotation_path, task)
os.makedirs(annotation_path, exist_ok=True)

for split in ["train", "val", "test"]:
Expand Down
13 changes: 12 additions & 1 deletion external/anomaly/ote_anomalib/train_task.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,8 @@
# See the License for the specific language governing permissions
# and limitations under the License.

from typing import Optional

from anomalib.utils.callbacks import MinMaxNormalizationCallback
from ote_anomalib import AnomalyInferenceTask
from ote_anomalib.callbacks import ProgressCallback
Expand All @@ -23,7 +25,7 @@
from ote_sdk.entities.model import ModelEntity
from ote_sdk.entities.train_parameters import TrainParameters
from ote_sdk.usecases.tasks.interfaces.training_interface import ITrainingTask
from pytorch_lightning import Trainer
from pytorch_lightning import Trainer, seed_everything

logger = get_logger(__name__)

Expand All @@ -36,17 +38,26 @@ def train(
dataset: DatasetEntity,
output_model: ModelEntity,
train_parameters: TrainParameters,
seed: Optional[int] = None,
) -> None:
"""Train the anomaly classification model.

Args:
dataset (DatasetEntity): Input dataset.
output_model (ModelEntity): Output model to save the model weights.
train_parameters (TrainParameters): Training parameters
seed: (Optional[int]): Setting seed to a value other than 0 also marks PytorchLightning trainer's
deterministic flag to True.
"""
logger.info("Training the model.")

config = self.get_config()

if seed:
logger.info(f"Setting seed to {seed}")
seed_everything(seed, workers=True)
config.trainer.deterministic = True

logger.info("Training Configs '%s'", config)

datamodule = OTEAnomalyDataModule(config=config, dataset=dataset, task_type=self.task_type)
Expand Down
3 changes: 2 additions & 1 deletion external/anomaly/tests/test_ote_training.py
Original file line number Diff line number Diff line change
Expand Up @@ -238,7 +238,8 @@ def _run_ote_training(self, data_collector):
self.copy_hyperparams = deepcopy(self.task.task_environment.get_hyper_parameters())

try:
self.task.train(self.dataset, self.output_model, TrainParameters)
# fix seed so that result is repeatable
self.task.train(self.dataset, self.output_model, TrainParameters, seed=42)
except Exception as ex:
raise RuntimeError("Training failed") from ex

Expand Down
23 changes: 23 additions & 0 deletions external/anomaly/tools/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
OpenVINO Training Extension interacts with the anomaly detection library ([Anomalib](https://github.com/openvinotoolkit/anomalib)) by providing interfaces in the `external/anomaly` of this repository. The `sample.py` file contained in this folder serves as an end-to-end example of how these interfaces are used. To begin using this script, first ensure that `ote_cli`, `ote_sdk` and `external/anomaly` dependencies are installed.

To get started, we provide a handy script in `ote_anomalib/data/create_mvtec_ad_json_annotations.py` to help generate annotation json files for MVTec dataset. Assuming that you have placed the MVTec dataset in a directory your home folder (`~/dataset/MVTec`), you can run the following command to generate the annotations.

```bash
python create_mvtec_ad_json_annotations.py --data_path ~/datasets/MVTec --annotation_path ~/training_extensions/data/MVtec/
```

This will generate three folders in `~/training_extensions/data/MVtec/` for classification, segmentation and detection task.

Then, to run sample.py you can use the following command.

```bash
python tools/sample.py \
--dataset_path ~/datasets/MVTec \
--category bottle \
--train-ann-files ../../data/MVtec/bottle/segmentation/train.json \
--val-ann-files ../../data/MVtec/bottle/segmentation/val.json \
--test-ann-files ../../data/MVtec/bottle/segmentation/test.json \
--model_template_path ./configs/anomaly_segmentation/padim/template.yaml
```

Optionally, you can also optimize to `nncf` or `pot` by using the `--optimization` flag
22 changes: 15 additions & 7 deletions external/anomaly/tools/sample.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@
import os
import shutil
from argparse import Namespace
from typing import Any, Dict, Type, Union
from typing import Any, Dict, Optional, Type, Union

from ote_anomalib import AnomalyNNCFTask, OpenVINOAnomalyTask
from ote_anomalib.data.dataset import (
Expand Down Expand Up @@ -61,13 +61,18 @@ def __init__(
val_subset: Dict[str, str],
test_subset: Dict[str, str],
model_template_path: str,
seed: Optional[int] = None,
) -> None:
"""Initialize OteAnomalyTask.

Args:
dataset_path (str): Path to the MVTec dataset.
seed (int): Seed to split the dataset into train/val/test splits.
train_subset (Dict[str, str]): Dictionary containing path to train annotation file and path to dataset.
val_subset (Dict[str, str]): Dictionary containing path to validation annotation file and path to dataset.
test_subset (Dict[str, str]): Dictionary containing path to test annotation file and path to dataset.
model_template_path (str): Path to model template.
seed (Optional[int]): Setting seed to a value other than 0 also marks PytorchLightning trainer's
deterministic flag to True.

Example:
>>> import os
Expand All @@ -78,9 +83,12 @@ def __init__(

>>> model_template_path = "./configs/anomaly_classification/padim/template.yaml"
>>> dataset_path = "./datasets/MVTec"
>>> seed = 0
>>> task = OteAnomalyTask(
... dataset_path=dataset_path, seed=seed, model_template_path=model_template_path
... dataset_path=dataset_path,
... train_subset={"ann_file": train.json, "data_root": dataset_path},
... val_subset={"ann_file": val.json, "data_root": dataset_path},
... test_subset={"ann_file": test.json, "data_root": dataset_path},
... model_template_path=model_template_path
... )

>>> task.train()
Expand Down Expand Up @@ -110,6 +118,7 @@ def __init__(
self.openvino_task: OpenVINOAnomalyTask
self.nncf_task: AnomalyNNCFTask
self.results = {"category": dataset_path}
self.seed = seed

def get_dataclass(
self,
Expand Down Expand Up @@ -176,9 +185,7 @@ def train(self) -> ModelEntity:
configuration=self.task_environment.get_model_configuration(),
)
self.torch_task.train(
dataset=self.dataset,
output_model=output_model,
train_parameters=TrainParameters(),
dataset=self.dataset, output_model=output_model, train_parameters=TrainParameters(), seed=self.seed
)

logger.info("Inferring the base torch model on the validation set.")
Expand Down Expand Up @@ -364,6 +371,7 @@ def main() -> None:
val_subset=val_subset,
test_subset=test_subset,
model_template_path=args.model_template_path,
seed=args.seed,
)

task.train()
Expand Down