-
Notifications
You must be signed in to change notification settings - Fork 446
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Refactor to implant optimizer and scheduler into model code (#3258)
* Refactor to implant optimizer and scheduler into model code - Add OptimizerCallableSupportHPO and PicklableLRSchedulerCallable for HPO - Implant optimizer and scheduler into efficientnet_b0 code as a testbed Signed-off-by: Kim, Vinnam <vinnam.kim@intel.com> * Upgrade jsonargparse to 4.27.7 Signed-off-by: Kim, Vinnam <vinnam.kim@intel.com> * Fix test installation error Signed-off-by: Kim, Vinnam <vinnam.kim@intel.com> * Fix test errors Signed-off-by: Kim, Vinnam <vinnam.kim@intel.com> --------- Signed-off-by: Kim, Vinnam <vinnam.kim@intel.com>
- Loading branch information
Showing
14 changed files
with
584 additions
and
77 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
"""Modules related to an optimizer.""" | ||
|
||
from otx.core.optimizer.callable import OptimizerCallableSupportHPO | ||
|
||
__all__ = ["OptimizerCallableSupportHPO"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
"""Optimizer callable to support hyper-parameter optimization (HPO) algorithm.""" | ||
|
||
from __future__ import annotations | ||
|
||
import importlib | ||
from typing import TYPE_CHECKING, Any, Sequence | ||
|
||
from torch import nn | ||
from torch.optim.optimizer import Optimizer | ||
|
||
from otx.core.utils.jsonargparse import ClassType, lazy_instance | ||
|
||
if TYPE_CHECKING: | ||
from lightning.pytorch.cli import OptimizerCallable | ||
from torch.optim.optimizer import params_t | ||
|
||
|
||
class OptimizerCallableSupportHPO: | ||
"""Optimizer callable supports OTX hyper-parameter optimization (HPO) algorithm. | ||
Args: | ||
optimizer_cls: Optimizer class type or string class import path. See examples for details. | ||
optimizer_kwargs: Keyword arguments used for the initialization of the given `optimizer_cls`. | ||
search_hparams: Sequence of optimizer hyperparameter names which can be tuned by the OTX HPO algorithm. | ||
Examples: | ||
This is an example to create `MobileNetV3ForMulticlassCls` with a `SGD` optimizer and | ||
custom configurations. | ||
```python | ||
from torch.optim import SGD | ||
from otx.algo.classification.mobilenet_v3_large import MobileNetV3ForMulticlassCls | ||
model = MobileNetV3ForMulticlassCls( | ||
num_classes=3, | ||
optimizer=OptimizerCallableSupportHPO( | ||
optimizer_cls=SGD, | ||
optimizer_kwargs={ | ||
"lr": 0.1, | ||
"momentum": 0.9, | ||
"weight_decay": 1e-4, | ||
}, | ||
), | ||
) | ||
``` | ||
It can be created from the string class import path such as | ||
```python | ||
from otx.algo.classification.mobilenet_v3_large import MobileNetV3ForMulticlassCls | ||
model = MobileNetV3ForMulticlassCls( | ||
num_classes=3, | ||
optimizer=OptimizerCallableSupportHPO( | ||
optimizer_cls="torch.optim.SGD", | ||
optimizer_kwargs={ | ||
"lr": 0.1, | ||
"momentum": 0.9, | ||
"weight_decay": 1e-4, | ||
}, | ||
), | ||
) | ||
``` | ||
""" | ||
|
||
def __init__( | ||
self, | ||
optimizer_cls: type[Optimizer] | str, | ||
optimizer_kwargs: dict[str, int | float | bool], | ||
search_hparams: Sequence[str] = ("lr",), | ||
): | ||
if isinstance(optimizer_cls, str): | ||
splited = optimizer_cls.split(".") | ||
module_path, class_name = ".".join(splited[:-1]), splited[-1] | ||
module = importlib.import_module(module_path) | ||
|
||
self.optimizer_init: type[Optimizer] = getattr(module, class_name) | ||
self.optimizer_path = optimizer_cls | ||
elif issubclass(optimizer_cls, Optimizer): | ||
self.optimizer_init = optimizer_cls | ||
self.optimizer_path = optimizer_cls.__module__ + "." + optimizer_cls.__qualname__ | ||
else: | ||
raise TypeError(optimizer_cls) | ||
|
||
for search_hparam in search_hparams: | ||
if search_hparam not in optimizer_kwargs: | ||
msg = ( | ||
f"Search hyperparamter={search_hparam} should be existed in " | ||
f"optimizer keyword arguments={optimizer_kwargs} as well." | ||
) | ||
raise ValueError(msg) | ||
|
||
self.search_hparams = list(search_hparams) | ||
self.optimizer_kwargs = optimizer_kwargs | ||
self.__dict__.update(optimizer_kwargs) | ||
|
||
def __call__(self, params: params_t) -> Optimizer: | ||
"""Create `torch.optim.Optimizer` instance for the given parameters.""" | ||
return self.optimizer_init(params, **self.optimizer_kwargs) | ||
|
||
def to_lazy_instance(self) -> ClassType: | ||
"""Return lazy instance of this class. | ||
Because OTX is rely on jsonargparse library, | ||
the default value of class initialization | ||
argument should be the lazy instance. | ||
Please refer to https://jsonargparse.readthedocs.io/en/stable/#default-values | ||
for more details. | ||
Examples: | ||
This is an example to implement a new model with a `SGD` optimizer and | ||
custom configurations as a default. | ||
```python | ||
class MyAwesomeMulticlassClsModel(OTXMulticlassClsModel): | ||
def __init__( | ||
self, | ||
num_classes: int, | ||
optimizer: OptimizerCallable = OptimizerCallableSupportHPO( | ||
optimizer_cls=SGD, | ||
optimizer_kwargs={ | ||
"lr": 0.1, | ||
"momentum": 0.9, | ||
"weight_decay": 1e-4, | ||
}, | ||
).to_lazy_instance(), | ||
scheduler: LRSchedulerCallable | LRSchedulerListCallable = DefaultSchedulerCallable, | ||
metric: MetricCallable = MultiClassClsMetricCallable, | ||
torch_compile: bool = False, | ||
) -> None: | ||
... | ||
``` | ||
""" | ||
return lazy_instance( | ||
OptimizerCallableSupportHPO, | ||
optimizer_cls=self.optimizer_path, | ||
optimizer_kwargs=self.optimizer_kwargs, | ||
search_hparams=self.search_hparams, | ||
) | ||
|
||
def __reduce__(self) -> str | tuple[Any, ...]: | ||
return self.__class__, ( | ||
self.optimizer_path, | ||
self.optimizer_kwargs, | ||
self.search_hparams, | ||
) | ||
|
||
@classmethod | ||
def from_callable(cls, func: OptimizerCallable) -> OptimizerCallableSupportHPO: | ||
"""Create this class instance from an existing optimizer callable.""" | ||
dummy_params = [nn.Parameter()] | ||
optimizer = func(dummy_params) | ||
|
||
param_group = next(iter(optimizer.param_groups)) | ||
|
||
return OptimizerCallableSupportHPO( | ||
optimizer_cls=optimizer.__class__, | ||
optimizer_kwargs={key: value for key, value in param_group.items() if key != "params"}, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.