Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

🐞 Fix inference for draem #470

Merged
merged 2 commits into from
Aug 2, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions anomalib/deploy/inferencers/openvino_inferencer.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,9 +104,11 @@ def pre_process(self, image: np.ndarray) -> np.ndarray:
Returns:
np.ndarray: pre-processed image.
"""
config = self.config.transform if "transform" in self.config.keys() else None
transform_config = (
self.config.dataset.transform_config.val if "transform_config" in self.config.dataset.keys() else None
)
image_size = tuple(self.config.dataset.image_size)
pre_processor = PreProcessor(config, image_size)
pre_processor = PreProcessor(transform_config, image_size)
processed_image = pre_processor(image=image)["image"]

if len(processed_image.shape) == 3:
Expand Down
8 changes: 5 additions & 3 deletions anomalib/deploy/inferencers/torch_inferencer.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,9 +106,11 @@ def pre_process(self, image: np.ndarray) -> Tensor:
Returns:
Tensor: pre-processed image.
"""
config = self.config.transform if "transform" in self.config.keys() else None
transform_config = (
self.config.dataset.transform_config.val if "transform_config" in self.config.dataset.keys() else None
)
image_size = tuple(self.config.dataset.image_size)
pre_processor = PreProcessor(config, image_size)
pre_processor = PreProcessor(transform_config, image_size)
processed_image = pre_processor(image=image)["image"]

if len(processed_image) == 3:
Expand Down Expand Up @@ -143,7 +145,7 @@ def post_process(self, predictions: Tensor, meta_data: Optional[Union[Dict, Dict
meta_data = self.meta_data

if isinstance(predictions, Tensor):
anomaly_map = predictions.cpu().numpy()
anomaly_map = predictions.detach().cpu().numpy()
pred_score = anomaly_map.reshape(-1).max()
else:
# NOTE: Patchcore `forward`` returns heatmap and score.
Expand Down
2 changes: 1 addition & 1 deletion anomalib/models/draem/lightning_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@ def validation_step(self, batch, _):
Dictionary to which predicted anomaly maps have been added.
"""
prediction = self.model(batch["image"])
batch["anomaly_maps"] = prediction[:, 1, :, :]
batch["anomaly_maps"] = prediction
return batch


Expand Down
2 changes: 1 addition & 1 deletion anomalib/models/draem/torch_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ def forward(self, batch: Tensor) -> Union[Tensor, Tuple[Tensor, Tensor]]:
prediction = self.discriminative_subnetwork(concatenated_inputs)
if self.training:
return reconstruction, prediction
return torch.softmax(prediction, dim=1)
return torch.softmax(prediction, dim=1)[:, 1, ...]


class ReconstructiveSubNetwork(nn.Module):
Expand Down
20 changes: 13 additions & 7 deletions tests/pre_merge/deploy/test_inferencer.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,18 @@ def get_model_config(
class TestInferencers:
@pytest.mark.parametrize(
"model_name",
["cflow", "dfm", "dfkde", "fastflow", "ganomaly", "padim", "patchcore", "reverse_distillation", "stfpm"],
[
"cflow",
"dfm",
"dfkde",
"draem",
"fastflow",
"ganomaly",
"padim",
"patchcore",
"reverse_distillation",
"stfpm",
],
)
@TestDataset(num_train=20, num_test=1, path=get_dataset_path(), use_mvtec=False)
def test_torch_inference(self, model_name: str, category: str = "shapes", path: str = "./datasets/MVTec"):
Expand Down Expand Up @@ -81,12 +92,7 @@ def test_torch_inference(self, model_name: str, category: str = "shapes", path:

@pytest.mark.parametrize(
"model_name",
[
"dfm",
"ganomaly",
"padim",
"stfpm",
],
["dfm", "draem", "ganomaly", "padim", "stfpm"],
)
@TestDataset(num_train=20, num_test=1, path=get_dataset_path(), use_mvtec=False)
def test_openvino_inference(self, model_name: str, category: str = "shapes", path: str = "./datasets/MVTec"):
Expand Down
5 changes: 4 additions & 1 deletion tools/inference/lightning_inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,10 @@ def infer():

trainer = Trainer(callbacks=callbacks, **config.trainer)

dataset = InferenceDataset(args.input, image_size=tuple(config.dataset.image_size))
transform_config = config.dataset.transform_config.val if "transform_config" in config.dataset.keys() else None
dataset = InferenceDataset(
args.input, image_size=tuple(config.dataset.image_size), transform_config=transform_config
)
dataloader = DataLoader(dataset)
trainer.predict(model=model, dataloaders=[dataloader])

Expand Down