Skip to content

Commit

Permalink
Allow specifying feature layer and pool factor in DFM (#215)
Browse files Browse the repository at this point in the history
* Allow specifying feature layer and pool factor in DFM

* 🏷 Rename pool to pooling_kernel_size to make it more descriptive.

* 🏷 renamed variable names in `get_features` method

* 🏷 Change the keyword argument in Dfm Lightning Module to properly import the Dfm Model.

Co-authored-by: Samet Akcay <samet.akcay@intel.com>
  • Loading branch information
nahuja-intel and samet-akcay authored Apr 12, 2022
1 parent e706f95 commit 8d38266
Show file tree
Hide file tree
Showing 3 changed files with 24 additions and 6 deletions.
2 changes: 2 additions & 0 deletions anomalib/models/dfm/config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,8 @@ dataset:
model:
name: dfm
backbone: resnet18
layer: layer3
pooling_kernel_size: 4
pca_level: 0.97
score_type: fre # nll: for Gaussian modeling, fre: pca feature reconstruction error
project_path: ./results
Expand Down
22 changes: 17 additions & 5 deletions anomalib/models/dfm/dfm_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
import math

import torch
import torch.nn.functional as F
import torchvision
from torch import Tensor, nn

Expand Down Expand Up @@ -85,18 +86,23 @@ class DFMModel(nn.Module):
Args:
backbone (str): Pre-trained model backbone.
layer (str): Layer from which to extract features.
pool (int): _description_
n_comps (float, optional): Ratio from which number of components for PCA are calculated. Defaults to 0.97.
score_type (str, optional): Scoring type. Options are `fre` and `nll`. Defaults to "fre".
"""

def __init__(self, backbone: str, n_comps: float = 0.97, score_type: str = "fre"):
def __init__(
self, backbone: str, layer: str, pooling_kernel_size: int, n_comps: float = 0.97, score_type: str = "fre"
):
super().__init__()
self.backbone = getattr(torchvision.models, backbone)
self.pooling_kernel_size = pooling_kernel_size
self.n_components = n_comps
self.pca_model = PCA(n_components=self.n_components)
self.gaussian_model = SingleClassGaussian()
self.score_type = score_type
self.feature_extractor = FeatureExtractor(backbone=self.backbone(pretrained=True), layers=["avgpool"]).eval()
self.feature_extractor = FeatureExtractor(backbone=self.backbone(pretrained=True), layers=[layer]).eval()

def fit(self, dataset: Tensor) -> None:
"""Fit a pca transformation and a Gaussian model to dataset.
Expand Down Expand Up @@ -142,9 +148,15 @@ def get_features(self, batch: Tensor) -> Tensor:
Tensor: Tensor containing extracted features.
"""
self.feature_extractor.eval()
layer_outputs = self.feature_extractor(batch)
layer_outputs = torch.cat(list(layer_outputs.values())).detach()
return layer_outputs
features = self.feature_extractor(batch)
for layer in features:
batch_size = len(features[layer])
if self.pooling_kernel_size > 1:
features[layer] = F.avg_pool2d(input=features[layer], kernel_size=self.pooling_kernel_size)
features[layer] = features[layer].view(batch_size, -1)

features = torch.cat(list(features.values())).detach()
return features

def forward(self, batch: Tensor) -> Tensor:
"""Computer score from input images.
Expand Down
6 changes: 5 additions & 1 deletion anomalib/models/dfm/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,11 @@ def __init__(self, hparams: Union[DictConfig, ListConfig]):
super().__init__(hparams)

self.model: DFMModel = DFMModel(
backbone=hparams.model.backbone, n_comps=hparams.model.pca_level, score_type=hparams.model.score_type
backbone=hparams.model.backbone,
layer=hparams.model.layer,
pooling_kernel_size=hparams.model.pooling_kernel_size,
n_comps=hparams.model.pca_level,
score_type=hparams.model.score_type,
)
self.embeddings: List[Tensor] = []

Expand Down

0 comments on commit 8d38266

Please sign in to comment.