Skip to content

Commit

Permalink
Minor refactor (#587)
Browse files Browse the repository at this point in the history
* 🛠 Fix PatchCore image-level score computation (#580)

* fix patchcore image-level score computation

* docstring and comment

* remove default value for n_neighbors

* torch.Tensor -> Tensor

* Minor refactor

Co-authored-by: Dick Ameln <dick.ameln@intel.com>
Co-authored-by: Ashwin Vaidya <ashwinitinvaidya@gmail.com>
  • Loading branch information
3 people authored Sep 26, 2022
1 parent d07a116 commit 6b5f262
Show file tree
Hide file tree
Showing 7 changed files with 67 additions and 66 deletions.
57 changes: 11 additions & 46 deletions anomalib/models/patchcore/anomaly_map.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
import torch
import torch.nn.functional as F
from omegaconf import ListConfig
from torch import nn
from torch import Tensor, nn

from anomalib.models.components import GaussianBlur2d

Expand All @@ -26,67 +26,32 @@ def __init__(
kernel_size = 2 * int(4.0 * sigma + 0.5) + 1
self.blur = GaussianBlur2d(kernel_size=(kernel_size, kernel_size), sigma=(sigma, sigma), channels=1)

def compute_anomaly_map(self, patch_scores: torch.Tensor, feature_map_shape: torch.Size) -> torch.Tensor:
def compute_anomaly_map(self, patch_scores: Tensor) -> torch.Tensor:
"""Pixel Level Anomaly Heatmap.
Args:
patch_scores (torch.Tensor): Patch-level anomaly scores
feature_map_shape (torch.Size): 2-D feature map shape (width, height)
patch_scores (Tensor): Patch-level anomaly scores
Returns:
torch.Tensor: Map of the pixel-level anomaly scores
"""
width, height = feature_map_shape
batch_size = len(patch_scores) // (width * height)

anomaly_map = patch_scores[:, 0].reshape((batch_size, 1, width, height))
anomaly_map = F.interpolate(anomaly_map, size=(self.input_size[0], self.input_size[1]))

anomaly_map = F.interpolate(patch_scores, size=(self.input_size[0], self.input_size[1]))
anomaly_map = self.blur(anomaly_map)

return anomaly_map

@staticmethod
def compute_anomaly_score(patch_scores: torch.Tensor) -> torch.Tensor:
"""Compute Image-Level Anomaly Score.
Args:
patch_scores (torch.Tensor): Patch-level anomaly scores
Returns:
torch.Tensor: Image-level anomaly scores
"""
max_scores = torch.argmax(patch_scores[:, 0])
confidence = torch.index_select(patch_scores, 0, max_scores)
weights = 1 - torch.max(F.softmax(confidence, dim=-1))
score = weights * torch.max(patch_scores[:, 0])
return score

def forward(self, **kwargs: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
def forward(self, patch_scores: Tensor) -> Tensor:
"""Returns anomaly_map and anomaly_score.
Expects `patch_scores` keyword to be passed explicitly
Expects `feature_map_shape` keyword to be passed explicitly
Args:
patch_scores (Tensor): Patch-level anomaly scores
Example
>>> anomaly_map_generator = AnomalyMapGenerator(input_size=input_size)
>>> map, score = anomaly_map_generator(patch_scores=numpy_array, feature_map_shape=feature_map_shape)
Raises:
ValueError: If `patch_scores` key is not found
>>> map = anomaly_map_generator(patch_scores=patch_scores)
Returns:
Tuple[torch.Tensor, torch.Tensor]: anomaly_map, anomaly_score
Tensor: anomaly_map
"""

if "patch_scores" not in kwargs:
raise ValueError(f"Expected key `patch_scores`. Found {kwargs.keys()}")

if "feature_map_shape" not in kwargs:
raise ValueError(f"Expected key `feature_map_shape`. Found {kwargs.keys()}")

patch_scores = kwargs["patch_scores"]
feature_map_shape = kwargs["feature_map_shape"]

anomaly_map = self.compute_anomaly_map(patch_scores, feature_map_shape)
anomaly_score = self.compute_anomaly_score(patch_scores)
return anomaly_map, anomaly_score
anomaly_map = self.compute_anomaly_map(patch_scores)
return anomaly_map
2 changes: 1 addition & 1 deletion anomalib/models/patchcore/lightning_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,7 +107,7 @@ def validation_step(self, batch, _): # pylint: disable=arguments-differ

anomaly_maps, anomaly_score = self.model(batch["image"])
batch["anomaly_maps"] = anomaly_maps
batch["pred_scores"] = anomaly_score.unsqueeze(0)
batch["pred_scores"] = anomaly_score

return batch

Expand Down
64 changes: 50 additions & 14 deletions anomalib/models/patchcore/torch_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,10 +41,10 @@ def __init__(
self.feature_pooler = torch.nn.AvgPool2d(3, 1, 1)
self.anomaly_map_generator = AnomalyMapGenerator(input_size=input_size)

self.register_buffer("memory_bank", torch.Tensor())
self.memory_bank: torch.Tensor
self.register_buffer("memory_bank", Tensor())
self.memory_bank: Tensor

def forward(self, input_tensor: Tensor) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
def forward(self, input_tensor: Tensor) -> Union[Tensor, Tuple[Tensor, Tensor]]:
"""Return Embedding during training, or a tuple of anomaly map and anomaly score during testing.
Steps performed:
Expand All @@ -56,7 +56,7 @@ def forward(self, input_tensor: Tensor) -> Union[torch.Tensor, Tuple[torch.Tenso
input_tensor (Tensor): Input tensor
Returns:
Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: Embedding for training,
Union[Tensor, Tuple[Tensor, Tensor]]: Embedding for training,
anomaly map and anomaly score for testing.
"""
if self.tiler:
Expand All @@ -71,21 +71,29 @@ def forward(self, input_tensor: Tensor) -> Union[torch.Tensor, Tuple[torch.Tenso
if self.tiler:
embedding = self.tiler.untile(embedding)

feature_map_shape = embedding.shape[-2:]
batch_size, _, width, height = embedding.shape
embedding = self.reshape_embedding(embedding)

if self.training:
output = embedding
else:
patch_scores = self.nearest_neighbors(embedding=embedding, n_neighbors=self.num_neighbors)
anomaly_map, anomaly_score = self.anomaly_map_generator(
patch_scores=patch_scores, feature_map_shape=feature_map_shape
)
# apply nearest neighbor search
patch_scores, locations = self.nearest_neighbors(embedding=embedding, n_neighbors=1)
# reshape to batch dimension
patch_scores = patch_scores.reshape((batch_size, -1))
locations = locations.reshape((batch_size, -1))
# compute anomaly score
anomaly_score = self.compute_anomaly_score(patch_scores, locations, embedding)
# reshape to w, h
patch_scores = patch_scores.reshape((batch_size, 1, width, height))
# get anomaly map
anomaly_map = self.anomaly_map_generator(patch_scores)

output = (anomaly_map, anomaly_score)

return output

def generate_embedding(self, features: Dict[str, Tensor]) -> torch.Tensor:
def generate_embedding(self, features: Dict[str, Tensor]) -> Tensor:
"""Generate embedding from hierarchical feature map.
Args:
Expand Down Expand Up @@ -121,7 +129,7 @@ def reshape_embedding(embedding: Tensor) -> Tensor:
embedding = embedding.permute(0, 2, 3, 1).reshape(-1, embedding_size)
return embedding

def subsample_embedding(self, embedding: torch.Tensor, sampling_ratio: float) -> None:
def subsample_embedding(self, embedding: Tensor, sampling_ratio: float) -> None:
"""Subsample embedding based on coreset sampling and store to memory.
Args:
Expand All @@ -134,7 +142,7 @@ def subsample_embedding(self, embedding: torch.Tensor, sampling_ratio: float) ->
coreset = sampler.sample_coreset()
self.memory_bank = coreset

def nearest_neighbors(self, embedding: Tensor, n_neighbors: int = 9) -> Tensor:
def nearest_neighbors(self, embedding: Tensor, n_neighbors: int) -> Tuple[Tensor, Tensor]:
"""Nearest Neighbours using brute force method and euclidean norm.
Args:
Expand All @@ -143,7 +151,35 @@ def nearest_neighbors(self, embedding: Tensor, n_neighbors: int = 9) -> Tensor:
Returns:
Tensor: Patch scores.
Tensor: Locations of the nearest neighbor(s).
"""
distances = torch.cdist(embedding, self.memory_bank, p=2.0) # euclidean norm
patch_scores, _ = distances.topk(k=n_neighbors, largest=False, dim=1)
return patch_scores
patch_scores, locations = distances.topk(k=n_neighbors, largest=False, dim=1)
return patch_scores, locations

def compute_anomaly_score(self, patch_scores: Tensor, locations: Tensor, embedding: Tensor) -> Tensor:
"""Compute Image-Level Anomaly Score.
Args:
patch_scores (Tensor): Patch-level anomaly scores
locations: Memory bank locations of the nearest neighbor for each patch location
embedding: The feature embeddings that generated the patch scores
Returns:
Tensor: Image-level anomaly scores
"""

# 1. Find the patch with the largest distance to it's nearest neighbor in each image
max_patches = torch.argmax(patch_scores, dim=1) # (m^test,* in the paper)
# 2. Find the distance of the patch to it's nearest neighbor, and the location of the nn in the membank
score = patch_scores[torch.arange(len(patch_scores)), max_patches] # s in the paper
nn_index = locations[torch.arange(len(patch_scores)), max_patches] # m^* in the paper
# 3. Find the support samples of the nearest neighbor in the membank
nn_sample = self.memory_bank[nn_index, :]
_, support_samples = self.nearest_neighbors(nn_sample, n_neighbors=self.num_neighbors) # N_b(m^*) in the paper
# 4. Find the distance of the patch features to each of the support samples
distances = torch.cdist(embedding[max_patches].unsqueeze(1), self.memory_bank[support_samples], p=2.0)
# 5. Apply softmax to find the weights
weights = (1 - F.softmax(distances.squeeze()))[..., 0]
# 6. Apply the weight factor to the score
score = weights * score # S^* in the paper
return score
8 changes: 4 additions & 4 deletions docs/source/tutorials/hyperparameter_optimization.rst
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ The default configuration for the models will not always work on a new dataset.
YAML file
**********

A Sample configuration files for hyperparameter optimization with Comet is provided at ``tools/hpo/config/comet_sweep.yaml`` and reproduced below:
A Sample configuration files for hyperparameter optimization with Comet is provided at ``tools/hpo/configs/comet.yaml`` and reproduced below:

.. code-block:: yaml
Expand All @@ -30,7 +30,7 @@ A Sample configuration files for hyperparameter optimization with Comet is provi
The maxCombo defines the total number of experiments to run. The algorithm is the optimization method to be used. The metric is the metric to be used to evaluate the performance of the model. The parameters are the hyperparameters to be optimized. For details on other possible configurations with Comet's Optimizer , refer to the `Comet's <https://www.comet.com/docs/v2/api-and-sdk/python-sdk/introduction-optimizer/>`_ documentation.

A sample configuration file for hyperparameter optimization with Weights and Bias is provided at ``tools/hpo/config/wandb_sweep.yaml`` and is reproduced below:
A sample configuration file for hyperparameter optimization with Weights and Bias is provided at ``tools/hpo/configs/wandb.yaml`` and is reproduced below:

.. code-block:: yaml
Expand Down Expand Up @@ -65,14 +65,14 @@ To run the hyperparameter optimization, use the following command:
python tools/hpo/sweep.py --model padim \
--model_config ./path_to_config.yaml \
--sweep_config tools/hpo/config/comet_sweep.yaml
--sweep_config tools/hpo/configs/comet.yaml
In case ``model_config`` is not provided, the script looks at the default config location for that model.

.. code-block:: bash
python tools/hpo/sweep.py --sweep_config tools/hpo/config/comet_sweep.yaml
python tools/hpo/sweep.py --sweep_config tools/hpo/configs/comet.yaml
Sample Output
**************
Expand Down
File renamed without changes.
File renamed without changes.
2 changes: 1 addition & 1 deletion tools/hpo/sweep.py
Original file line number Diff line number Diff line change
Expand Up @@ -100,7 +100,7 @@ def run(self):
comet_logger = CometLogger()

# allow pytorch-lightning to use the experiment from optimizer
comet_logger._experiment = exp # pylint: disable=W0212
comet_logger._experiment = exp # pylint: disable=protected-access
run_params = exp.params
for param in run_params.keys():
set_in_nested_config(self.config, param.split("."), run_params[param])
Expand Down

0 comments on commit 6b5f262

Please sign in to comment.