Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[BIT-574] Deserialization speed up (v2) #921

Merged
merged 6 commits into from
Sep 22, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 22 additions & 10 deletions bittensor/utils/tokenizer_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -872,19 +872,31 @@ def unravel_topk_token_phrases(compact_topk: torch.Tensor, topk: int, ignore_ind
batch_size = len(prob_idx) // (topk + 1) # (batch_size * (topk + floor)) / (topk + floor)
assert batch_size * (topk + 1) == len(prob_idx), f'{batch_size} * ({topk} + 1) != {len(prob_idx)}' # decoding irregularity otherwise

# split into topk token phrases with prob prepend [prob, tok_0, tok_1, ... tok_n]
phrases = [s.tolist() for s in torch.tensor_split(compact_topk, prob_idx)] # tolist for faster list comprehension
phrases = phrases[1:] # ignore first (empty) split
# Obtain phrase lengths and maximum phrase length
phrase_len = prob_idx[1:] - prob_idx[:-1] # [batch_size * (topk + 1) - 1] length of each phrase
phrase_len = torch.cat((phrase_len, torch.tensor([1]))) # [batch_size * (topk + 1)] prob_floor is always len=1
max_len = phrase_len.max() # determine width of topk_tensor as max len of all phrase lists (with prob in front)

# determine width of topk_tensor as max len of all phrase lists (with prob in front)
max_len = max([len(p) for p in phrases]) # max_{b,k}(len([prob_k, tok_0_k, tok_1_k, ...]))
# Initialize topk_tensor with ignore_index + 2, since decrement with 2 follows to remove token offset later
topk_tensor = (ignore_index + 2) * torch.ones((batch_size * (topk + 1), max_len)) # [batch_size * (topk + 1), max_len]

# Insert phrases of each unique length as block into topk_tensor
for unique_len in phrase_len.unique():
if unique_len <= 1:
continue # skip probability column, will be added afterward

phrase_idx = torch.where(phrase_len == unique_len)[0] # phrase indices where phrase_len is unique_len
compact_idx = prob_idx[phrase_idx] # indices in compact_topk

# Create indexing block, add index for each phrase position, skip first (prob) position
block_idx = [compact_idx + position for position in range(1, unique_len)] # incrementally add each position of phrase
# transpose .t() ensures correct interleaving of consecutive positions:
# [[phrase_a_1, phrase_a_2, ..., phrase_a_n], [phrase_b_1, phrase_b_2, ..., phrase_b_n], ...]
block_idx = torch.vstack(block_idx).t().reshape(-1, unique_len - 1) # [-1, unique_len - 1] for all phrases with unique_len

ignore_index_2 = ignore_index + 2 # increment with 2, as decrement with 2 follows
topk_tensor[phrase_idx, 1:unique_len] = compact_topk[block_idx] # slice selected phrases and copy into topk_tensor

# form single 2D tensor with topk token phrases with prob prepend [prob, tok_0, tok_1, ... tok_n]
topk_tensor = torch.tensor([p + [ignore_index_2] * (max_len - len(p))
for p in phrases]).to(compact_topk.device) # [batch_size * (topk + 1), max_len]
topk_tensor -= 2 # remove token offset
topk_tensor -= 2 # remove token offset, overwrites probability column, replace probabilities below

# grafting probability tensors into first column to attach gradients
topk_tensor[:, 0] = compact_topk[prob_idx] # tensor([prob_k=0_b, prob_k=1_b, ..., prob_floor_b])
Expand Down
71 changes: 71 additions & 0 deletions tests/unit_tests/bittensor_tests/utils/test_tokenizer_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -433,6 +433,77 @@ def test_topk_token_phrases():
tokenizer_topk_phrases(sample_text[text_name], model_name, max_length, _enc_pre_logits, topk=128)


def test_random_topk_token_phrases(single_token_ratios: Tuple = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0),
max_len_final: int = 10, batch_size: int = 32, topk: int = 4096,
ignore_index: int = -100, vocab_len: int = 50256):
r"""
Asserts that randomly instantiated compact_topk encodings can be correctly decoded
to recover the original topk_tensor, where:
topk_tensor:
[batch_size, (topk + 1), max_len] tensor includes topk token probabilities (prob_k) + floor_prob
in first column with gradients attached, with std_tokens in remaining columns with ignore_index padding.
Content structure:
[[[prob_k=0_b=0, tok_0_k=0_b=0, tok_1_k=0_b=0, ..., ignore_index?],
[prob_k=1_b=0, tok_0_k=1_b=0, tok_1_k=1_b=0, ..., ignore_index?],
[...],
[prob_floor_b=0, ignore_index, ..., ignore_index]],
[[prob_k=0_b=1, tok_0_k=0_b=1, tok_1_k=0_b=1, ..., ignore_index?],
[prob_k=1_b=1, tok_0_k=1_b=1, tok_1_k=1_b=1, ..., ignore_index?],
[...],
[prob_floor_b=1, ignore_index, ..., ignore_index]],
[...]]
compact_topk:
[sum_b(sum_k(len(phrase_k) + 1)_b)] Compacted 1-D tensor >= batch_size * (2 * topk + 1),
since 2 * topk + 1: topk x [probability, token sequence (at least one token)] +
floor probability (rest).
Content structure:
[prob_k=0_b=0, tok_0_k=0_b=0, tok_1_k=0_b=0, ..., prob_k=1_b=0, tok_0_k=1_b=0, ..., prob_floor_b=0,
prob_k=0_b=1, tok_0_k=0_b=1, tok_1_k=0_b=1, ..., prob_k=1_b=1, tok_0_k=1_b=1, ..., prob_floor_b=1,
...]

Args:
single_token_ratios (:obj:`Tuple`, `optional`):
Series of ratios of single-token phrases to total phrases, to test individually.
max_len_final (:obj:`int`, `optional`):
The maximum phrase length to test.
batch_size (:obj:`int`, `optional`):
The batch_size of the test input.
topk (:obj:`int`, `optional`):
The topk of the test input, the amount of logits retained.
ignore_index (:obj:`int`, `optional`):
The padding value after the end of each phrase.
vocab_len (:obj:`int`, `optional`):
The tokenizer vocabulary length.

Returns:
"""
for single_token_ratio in single_token_ratios: # for each single token occurrence ratio
for _max_len in torch.arange(3, max_len_final): # for each max_len in range 3 to max_len_final
longer_phrases = int(topk * (1 - single_token_ratio) / (_max_len - 2)) # number of multi-token phrases per length
max_len = _max_len if longer_phrases > 0 else 2 # change max_len if only single_phrases
single_phrases = topk - (max_len - 2) * longer_phrases # number of [prob, token, ignore_index, ...] phrases

topk_tensor = ignore_index * torch.ones((batch_size, topk + 1, max_len)) # [batch_size, (topk + 1), max_len]

for batch in range(batch_size): # construct each batch separately
permuted = torch.randperm(topk)

# add single token phrases: [prob, token, ignore_index, ..., ignore_index]
topk_tensor[batch, permuted[:single_phrases], 1:2] = 1. * torch.randint(vocab_len, (single_phrases, 1))

# add longer token phrases: [prob, token, token, ..., ignore_index?, ..., ignore_index]
for length in range(2, max_len):
start = single_phrases + (length - 2) * longer_phrases
phrase_idx = permuted[start:start + longer_phrases]
topk_tensor[batch, phrase_idx, 1:length+1] = 1. * torch.randint(vocab_len, (longer_phrases, length))

topk_tensor[:, :, 0] = torch.rand((batch_size, topk + 1)) # assign random probabilities to first column

compact_topk = compact_topk_token_phrases(topk_tensor) # [>= batch_size * (2 * topk + 1)]
_topk_tensor = unravel_topk_token_phrases(compact_topk, topk=topk) # [batch_size, (topk + 1), max_len]
assert torch.all(torch.eq(_topk_tensor, topk_tensor))


def topk_phrases_crossentropy(text_batch: List[str], model_name: str, max_length: int,
last_indices: List[int],
enc_pre_logits: torch.FloatTensor = None,
Expand Down