📘 A python/javascript nanolibrary for apply “spaced repetition” in learning purposes apps 📙
Forget to logical process to know when to repeat the information for the optimal learning process of the user
Ideal for quizzes, micro learning, and practical exercises what requires domain
pip install spacememo
npm install spacememo
from spacememo import SpacedMemo
let memo = SpacedMemo()
# insert new values with the id number or string of the excercise or question
memo.insertValue('idQuestion1');
# multiple values
[memo.insert_value(id) for id in ['id1', 'id2', 'id3']]
# optionally you can config a level of previous expertise to decrease initial frecuency instead default 'beginner' value
memo.insert_value('id_question6', {'domain': 'medium'})
memo.insert_value('id_question6', {'domain': 'expert'})
# spacememo gives the question or excersice that you need to resolve
memo.get_value() # returns an id
# evaluate the performance in last excersice or question with a boolean result
memo.evaluate(False)
# you can extract the data to render the order list for the user
memo.get_space_map()['values_queue'] # return an array of id elements
# and reorder the queue if user need to
config_value = memo.get_space_map().values_map
memo = SpacedMemo({
'values_queue': user_reorder_list,
'values_map': config_value
})
# or add in a persistent database and reuse in next sessions
saved_in_db = memo.get_space_map() # return a config object for persistent saving
my_new_study_session = SpacedMemo(saved_in_db)
# even you can change the default start position in queue based on your business requirements
memo.insert_value('idQuestion6', {'initial_position_in_queue': 0})
memo.insert_value('idQuestion6', {'initial_position_in_queue': 3, 'domain': 'medium'})
import { SpacedMemo } from "spacememo"
let spacedRepetition = new SpacedMemo()
// insert new values with the id number or string of the excercise or question
spacedRepetition.insertValue('idQuestion1')
// multiple values
['id1', 'id2', 'id3'].forEach(id => spacedRepetition.insertValue(id))
// optionally you can config a level of previous expertise to decrease initial frecuency instead default 'beginner' value
spacedRepetition.insertValue('idQuestion6', {domain: 'medium'})
spacedRepetition.insertValue('idQuestion6', {domain: 'expert'})
// spacememo gives the question or excersice that you need to resolve
spacedRepetition.getValue() // returns an id
// evaluate the performance in last excersice or question with a boolean result
spacedRepetition.evaluate(false)
// you can extract the data to render the order list for the user
spacedRepetition.getSpaceMap().values_queue // return an array of id elements
// and reorder the queue if user need to
let configValue = spacedRepetition.getSpaceMap().values_map
spacedRepetition = new SpacedMemo({
values_queue: userReorderList,
values_map: configValue
})
// or add in a persistent database and reuse in next sessions
let savedInDb = spacedRepetition.getSpaceMap() // return a config object for persistent saving
const myNewStudySession = new SpacedMemo(savedInDb)
// even you can change the default start position in queue based on your business requirements
spacedRepetition.insertValue('idQuestion6', {initialPositionInQueue: 0})
spacedRepetition.insertValue('idQuestion6', {initialPositionInQueue: 3, domain: 'medium'})
Spaced repetition algorithms based in queues gives lighter libraries and more easy to use
Any approach that you decide to implement a spaced repetition algorithm or library is good. The important thing of spaced repetition is:
- Estimulate the newest information more often than information with more domain
- Maintenance old knowledge distant little by little to avoid forget it
- Identify the question or skill with remember problems and review it
Happy learning! 📗