Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Backport 2.16] [Backport 2.x] Adds preset contentRegistry for IngestProcessors (#3281) #3405

Merged
merged 1 commit into from
Jan 18, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -1030,10 +1030,12 @@ public void loadExtensions(ExtensionLoader loader) {
@Override
public Map<String, org.opensearch.ingest.Processor.Factory> getProcessors(org.opensearch.ingest.Processor.Parameters parameters) {
Map<String, org.opensearch.ingest.Processor.Factory> processors = new HashMap<>();
NamedXContentRegistry contentRegistry = new NamedXContentRegistry(getNamedXContent());

processors
.put(
MLInferenceIngestProcessor.TYPE,
new MLInferenceIngestProcessor.Factory(parameters.scriptService, parameters.client, xContentRegistry)
new MLInferenceIngestProcessor.Factory(parameters.scriptService, parameters.client, contentRegistry)
);
return Collections.unmodifiableMap(processors);
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,14 @@
package org.opensearch.ml.processor;

import static org.mockito.ArgumentMatchers.any;
import static org.mockito.Mockito.*;
import static org.mockito.Mockito.argThat;
import static org.mockito.Mockito.doAnswer;
import static org.mockito.Mockito.eq;
import static org.mockito.Mockito.isNull;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.times;
import static org.mockito.Mockito.verify;
import static org.mockito.Mockito.when;
import static org.opensearch.ml.common.utils.StringUtils.toJson;
import static org.opensearch.ml.processor.MLInferenceIngestProcessor.DEFAULT_OUTPUT_FIELD_NAME;

Expand All @@ -31,6 +38,7 @@
import org.opensearch.core.action.ActionListener;
import org.opensearch.core.xcontent.NamedXContentRegistry;
import org.opensearch.ingest.IngestDocument;
import org.opensearch.ml.common.FunctionName;
import org.opensearch.ml.common.dataset.remote.RemoteInferenceInputDataSet;
import org.opensearch.ml.common.input.MLInput;
import org.opensearch.ml.common.output.model.MLResultDataType;
Expand Down Expand Up @@ -138,6 +146,63 @@ public void testExecute_Exception() throws Exception {

}

/**
* Models that use the parameters field need to have a valid NamedXContentRegistry object to create valid MLInputs. For example
* <pre>
* PUT /_plugins/_ml/_predict/text_embedding/model_id
* {
* "parameters": {
* "content_type" : "query"
* },
* "text_docs" : ["what day is it today?"],
* "target_response" : ["sentence_embedding"]
* }
* </pre>
* These types of models like Local Asymmetric embedding models use the parameters field.
* And as such we need to test that having the contentRegistry throws an exception as it can not
* properly create a valid MLInput to perform prediction
*
* @implNote If you check the stack trace of the test you will see it tells you that it's a direct consequence of xContentRegistry being null
*/
public void testExecute_xContentRegistryNullWithLocalModel_throwsException() throws Exception {
// Set the registry to null and reset after exiting the test
xContentRegistry = null;

String localModelInput =
"{ \"text_docs\": [\"What day is it today?\"],\"target_response\": [\"sentence_embedding\"], \"parameters\": { \"contentType\" : \"query\"} }";

MLInferenceIngestProcessor processor = createMLInferenceProcessor(
"local_model_id",
null,
null,
null,
false,
FunctionName.TEXT_EMBEDDING.toString(),
false,
false,
false,
localModelInput
);
try {
String npeMessage =
"Cannot invoke \"org.opensearch.ml.common.input.MLInput.setAlgorithm(org.opensearch.ml.common.FunctionName)\" because \"mlInput\" is null";

processor.execute(ingestDocument, handler);
verify(handler)
.accept(
isNull(),
argThat(exception -> exception instanceof NullPointerException && exception.getMessage().equals(npeMessage))
);
} catch (Exception e) {
// Java 11 doesn't pass the message correctly resulting in an anonymous NPE thus this getMessage() results in null
if (e.getMessage() != null) {
assertEquals("this catch block should not get executed.", e.getMessage());
}
}
// reset to mocked object
xContentRegistry = mock(NamedXContentRegistry.class);
}

/**
* test nested object document with array of Map<String,String>
*/
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
package org.opensearch.ml.rest;

import static org.opensearch.ml.common.MLTask.MODEL_ID_FIELD;
import static org.opensearch.ml.utils.TestData.SENTENCE_TRANSFORMER_MODEL_HASH_VALUE;
import static org.opensearch.ml.utils.TestData.SENTENCE_TRANSFORMER_MODEL_URL;
import static org.opensearch.ml.utils.TestHelper.makeRequest;

Expand All @@ -25,6 +26,7 @@
import org.opensearch.ml.common.transport.register.MLRegisterModelInput;
import org.opensearch.ml.utils.TestHelper;

import com.jayway.jsonpath.DocumentContext;
import com.jayway.jsonpath.JsonPath;

public class RestMLInferenceIngestProcessorIT extends MLCommonsRestTestCase {
Expand Down Expand Up @@ -431,6 +433,110 @@ public void testMLInferenceProcessorLocalModelObjectField() throws Exception {
Assert.assertEquals(0.49191704, (Double) embedding2.get(0), 0.005);
}

public void testMLInferenceIngestProcessor_simulatesIngestPipelineSuccessfully_withAsymmetricEmbeddingModelUsingPassageContentType()
throws Exception {
String taskId = registerModel(TestHelper.toJsonString(registerAsymmetricEmbeddingModelInput()));
waitForTask(taskId, MLTaskState.COMPLETED);
getTask(client(), taskId, response -> {
assertNotNull(response.get(MODEL_ID_FIELD));
this.localModelId = (String) response.get(MODEL_ID_FIELD);
try {
String deployTaskID = deployModel(this.localModelId);
waitForTask(deployTaskID, MLTaskState.COMPLETED);

getModel(client(), this.localModelId, model -> { assertEquals("DEPLOYED", model.get("model_state")); });
} catch (IOException | InterruptedException e) {
throw new RuntimeException(e);
}
});

String asymmetricPipelineName = "asymmetric_embedding_pipeline";
String createPipelineRequestBody = "{\n"
+ " \"description\": \"ingest PASSAGE text and generate a embedding using an asymmetric model\",\n"
+ " \"processors\": [\n"
+ " {\n"
+ " \"ml_inference\": {\n"
+ "\n"
+ " \"model_input\": \"{\\\"text_docs\\\":[\\\"${input_map.text_docs}\\\"],\\\"target_response\\\":[\\\"sentence_embedding\\\"],\\\"parameters\\\":{\\\"content_type\\\":\\\"passage\\\"}}\",\n"
+ " \"function_name\": \"text_embedding\",\n"
+ " \"model_id\": \""
+ this.localModelId
+ "\",\n"
+ " \"input_map\": [\n"
+ " {\n"
+ " \"text_docs\": \"description\"\n"
+ " }\n"
+ " ],\n"
+ " \"output_map\": [\n"
+ " {\n"
+ "\n"
+ " "
+ " \"fact_embedding\": \"$.inference_results[0].output[0].data\"\n"
+ " }\n"
+ " ]\n"
+ " }\n"
+ " }\n"
+ " ]\n"
+ "}";

createPipelineProcessor(createPipelineRequestBody, asymmetricPipelineName);
String sampleDocuments = "{\n"
+ " \"docs\": [\n"
+ " {\n"
+ " \"_index\": \"my-index\",\n"
+ " \"_id\": \"1\",\n"
+ " \"_source\": {\n"
+ " \"title\": \"Central Park\",\n"
+ " \"description\": \"A large public park in the heart of New York City, offering a wide range of recreational activities.\"\n"
+ " }\n"
+ " },\n"
+ " {\n"
+ " \"_index\": \"my-index\",\n"
+ " \"_id\": \"2\",\n"
+ " \"_source\": {\n"
+ " \"title\": \"Empire State Building\",\n"
+ " \"description\": \"An iconic skyscraper in New York City offering breathtaking views from its observation deck.\"\n"
+ " }\n"
+ " }\n"
+ " ]\n"
+ "}\n";

Map simulateResponseDocuments = simulateIngestPipeline(asymmetricPipelineName, sampleDocuments);

DocumentContext documents = JsonPath.parse(simulateResponseDocuments);

List centralParkFactEmbedding = documents.read("docs.[0].*._source.fact_embedding.*");
assertEquals(768, centralParkFactEmbedding.size());
Assert.assertEquals(0.5137818, (Double) centralParkFactEmbedding.get(0), 0.005);

List empireStateBuildingFactEmbedding = documents.read("docs.[1].*._source.fact_embedding.*");
assertEquals(768, empireStateBuildingFactEmbedding.size());
Assert.assertEquals(0.4493039, (Double) empireStateBuildingFactEmbedding.get(0), 0.005);
}

private MLRegisterModelInput registerAsymmetricEmbeddingModelInput() {
MLModelConfig modelConfig = TextEmbeddingModelConfig
.builder()
.modelType("bert")
.frameworkType(TextEmbeddingModelConfig.FrameworkType.SENTENCE_TRANSFORMERS)
.embeddingDimension(768)
.queryPrefix("query >>")
.passagePrefix("passage >> ")
.build();

return MLRegisterModelInput
.builder()
.modelName("test_model_name")
.version("1.0.0")
.functionName(FunctionName.TEXT_EMBEDDING)
.modelFormat(MLModelFormat.TORCH_SCRIPT)
.modelConfig(modelConfig)
.url(SENTENCE_TRANSFORMER_MODEL_URL)
.deployModel(false)
.hashValue(SENTENCE_TRANSFORMER_MODEL_HASH_VALUE)
.build();
}

// TODO: add tests for other local model types such as sparse/cross encoders
public void testMLInferenceProcessorLocalModelNestedField() throws Exception {

Expand Down Expand Up @@ -550,6 +656,14 @@ protected void createPipelineProcessor(String requestBody, final String pipeline

}

protected Map simulateIngestPipeline(String pipelineName, String sampleDocuments) throws IOException {
Response ingestionResponse = TestHelper
.makeRequest(client(), "POST", "/_ingest/pipeline/" + pipelineName + "/_simulate", null, sampleDocuments, null);
assertEquals(200, ingestionResponse.getStatusLine().getStatusCode());

return parseResponseToMap(ingestionResponse);
}

protected void createIndex(String indexName, String requestBody) throws Exception {
Response response = makeRequest(client(), "PUT", indexName, null, requestBody, null);
assertEquals(200, response.getStatusLine().getStatusCode());
Expand Down Expand Up @@ -585,7 +699,7 @@ protected MLRegisterModelInput registerModelInput() throws IOException, Interrup
.modelConfig(modelConfig)
.url(SENTENCE_TRANSFORMER_MODEL_URL)
.deployModel(false)
.hashValue("e13b74006290a9d0f58c1376f9629d4ebc05a0f9385f40db837452b167ae9021")
.hashValue(SENTENCE_TRANSFORMER_MODEL_HASH_VALUE)
.build();
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@ public class TestData {
"https://github.com/opensearch-project/ml-commons/blob/2.x/ml-algorithms/src/test/resources/org/opensearch/ml/engine/algorithms/text_embedding/all-MiniLM-L6-v2_torchscript_huggingface.zip?raw=true";
public static final String SENTENCE_TRANSFORMER_MODEL_URL =
"https://github.com/opensearch-project/ml-commons/blob/2.x/ml-algorithms/src/test/resources/org/opensearch/ml/engine/algorithms/text_embedding/traced_small_model.zip?raw=true";
public static final String SENTENCE_TRANSFORMER_MODEL_HASH_VALUE = "e13b74006290a9d0f58c1376f9629d4ebc05a0f9385f40db837452b167ae9021";
public static final String TIME_FIELD = "timestamp";
public static final String HUGGINGFACE_TRANSFORMER_MODEL_HASH_VALUE =
"e13b74006290a9d0f58c1376f9629d4ebc05a0f9385f40db837452b167ae9021";
Expand Down
Loading