forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 17
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Speculative decoding] Add ngram prompt lookup decoding (vllm-project…
…#4237) Co-authored-by: Lei Wen <wenlei03@qiyi.com>
- Loading branch information
Showing
14 changed files
with
1,004 additions
and
319 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,172 @@ | ||
"""This docstring details important information on the testing methodology. | ||
Most of the tests rely on "greedy equality", where we expect the output of | ||
speculative decoding on a sequence to exactly match the output of normal non- | ||
speculative decoding. | ||
Since speculative decoding with rejection sampling guarantees that the output | ||
distribution matches the target model's output distribution (up to hardware | ||
numerics, see https://arxiv.org/pdf/2302.01318.pdf), we can expect greedy | ||
equality. | ||
For ngram lookup, its idea comes from https://github.com/apoorvumang/prompt-lookup-decoding, | ||
and is merged into transform code base: https://github.com/huggingface/transformers/pull/27775. | ||
Since there is no model is needed for generate the proposal, we could make | ||
the testcase much simpler than drafter multi-step one. | ||
However, we still need to verify below scenario could be passed: | ||
* Batch size 1 greedy equality | ||
* Batch size >1 greedy equality | ||
* Test greedy equality under preemption | ||
* Test greedy equality under various ngram sizes / speculative sizes | ||
With those tests, we can say at least, ngram spec would not break the correctess | ||
for the target model outputs. | ||
""" | ||
|
||
import pytest | ||
|
||
from .conftest import run_greedy_equality_correctness_test | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"common_llm_kwargs", | ||
[{ | ||
# Skip cuda graph recording for fast test. | ||
"enforce_eager": True, | ||
# Required for spec decode. | ||
"use_v2_block_manager": True, | ||
# Print spec metrics. | ||
"disable_log_stats": False, | ||
}]) | ||
@pytest.mark.parametrize("per_test_common_llm_kwargs", [ | ||
{ | ||
"model": "JackFram/llama-68m", | ||
}, | ||
]) | ||
@pytest.mark.parametrize("baseline_llm_kwargs", [{}]) | ||
@pytest.mark.parametrize("test_llm_kwargs", [ | ||
{ | ||
"speculative_model": "[ngram]", | ||
"num_speculative_tokens": 5, | ||
"ngram_prompt_lookup_max": 3, | ||
}, | ||
]) | ||
@pytest.mark.parametrize("output_len", [ | ||
256, | ||
]) | ||
@pytest.mark.parametrize("batch_size", [1, 64]) | ||
@pytest.mark.parametrize("seed", [1]) | ||
def test_ngram_e2e_greedy_correctness(baseline_llm_generator, | ||
test_llm_generator, batch_size: int, | ||
output_len: int): | ||
"""Verify greedy equality on a tiny model with different batch size.""" | ||
run_greedy_equality_correctness_test(baseline_llm_generator, | ||
test_llm_generator, | ||
batch_size, | ||
max_output_len=output_len, | ||
force_output_len=True) | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"common_llm_kwargs", | ||
[{ | ||
"block_size": 8, | ||
# 2 for small prompt, 256//8 for generated. | ||
"num_gpu_blocks_override": 2 + 256 // 8, | ||
"max_model_len": (2 + 256 // 8) * 8, | ||
# Skip cuda graph recording for fast test. | ||
"enforce_eager": True, | ||
# Required for spec decode. | ||
"use_v2_block_manager": True | ||
}]) | ||
@pytest.mark.parametrize("per_test_common_llm_kwargs", [ | ||
{ | ||
"model": "JackFram/llama-160m", | ||
}, | ||
]) | ||
@pytest.mark.parametrize("baseline_llm_kwargs", [{}]) | ||
@pytest.mark.parametrize("test_llm_kwargs", [ | ||
{ | ||
"speculative_model": "[ngram]", | ||
"num_speculative_tokens": 5, | ||
"ngram_prompt_lookup_max": 3, | ||
}, | ||
]) | ||
@pytest.mark.parametrize( | ||
"output_len", | ||
[ | ||
# Use small output len for fast test. | ||
256, | ||
]) | ||
@pytest.mark.parametrize("batch_size", [4]) | ||
@pytest.mark.parametrize("seed", [1]) | ||
def test_ngram_e2e_greedy_correctness_with_preemption(baseline_llm_generator, | ||
test_llm_generator, | ||
batch_size: int, | ||
output_len: int): | ||
"""Verify greedy equality, even when some sequences are preempted mid- | ||
generation. | ||
""" | ||
run_greedy_equality_correctness_test(baseline_llm_generator, | ||
test_llm_generator, | ||
batch_size, | ||
max_output_len=output_len, | ||
force_output_len=True) | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"common_llm_kwargs", | ||
[{ | ||
"model": "JackFram/llama-68m", | ||
# Skip cuda graph recording for fast test. | ||
"enforce_eager": True, | ||
# Required for spec decode. | ||
"use_v2_block_manager": True | ||
}]) | ||
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}]) | ||
@pytest.mark.parametrize("baseline_llm_kwargs", [{}]) | ||
@pytest.mark.parametrize( | ||
"test_llm_kwargs", | ||
[ | ||
{ | ||
"speculative_model": "[ngram]", | ||
"num_speculative_tokens": k, | ||
"ngram_prompt_lookup_max": 3, | ||
} | ||
# Try a range of common k, as well as large speculation. | ||
for k in [1, 3, 5] | ||
] + [ | ||
{ | ||
"speculative_model": "[ngram]", | ||
"num_speculative_tokens": k, | ||
"ngram_prompt_lookup_max": 1, | ||
} | ||
# Try a range of common k, as well as large speculation. | ||
for k in [1, 3, 5] | ||
]) | ||
@pytest.mark.parametrize("batch_size", [2]) | ||
@pytest.mark.parametrize( | ||
"output_len", | ||
[ | ||
# Use smaller output len for fast test. | ||
32, | ||
]) | ||
@pytest.mark.parametrize("seed", [1]) | ||
def test_ngram_different_k(baseline_llm_generator, test_llm_generator, | ||
batch_size: int, output_len: int): | ||
"""Verify that ngram speculative decoding produces exact equality | ||
to without spec decode with many different values of k and | ||
different ngram_prompt_lookup_max. | ||
""" | ||
run_greedy_equality_correctness_test(baseline_llm_generator, | ||
test_llm_generator, | ||
batch_size, | ||
max_output_len=output_len, | ||
force_output_len=True) |
Oops, something went wrong.