Skip to content

Commit

Permalink
[processor/metricstransform]: Add scaling exponential histogram suppo…
Browse files Browse the repository at this point in the history
…rt (#34039)

**Description:** This PR adds support for the exponential histograms for
the `experimental_scale_value` in the metricstransformprocessor.

The scaling works by scaling the middle value of the first bucket (the
one that corresponds to the offset) and finding the offset corresponding
to this new value (the method used is described here:
https://opentelemetry.io/docs/specs/otel/metrics/data-model/#all-scales-use-the-logarithm-function).

The buckets are actually unchanged because they are "shifted" by the new
offset. I initially remapped all the values but I ended up always having
the same buckets so I left the buckets untouched to make the code
simpler and save on performance.

**Link to tracking Issue:**
#29803

**Testing:** unit test + e2e local test
  • Loading branch information
wildum authored Aug 13, 2024
1 parent 40e2a70 commit 7068fd9
Show file tree
Hide file tree
Showing 5 changed files with 303 additions and 9 deletions.
27 changes: 27 additions & 0 deletions .chloggen/metricstransform-processor-scale-exp-hist.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
# Use this changelog template to create an entry for release notes.

# One of 'breaking', 'deprecation', 'new_component', 'enhancement', 'bug_fix'
change_type: 'enhancement'

# The name of the component, or a single word describing the area of concern, (e.g. filelogreceiver)
component: metricstransformprocessor

# A brief description of the change. Surround your text with quotes ("") if it needs to start with a backtick (`).
note: Add scaling exponential histogram support

# Mandatory: One or more tracking issues related to the change. You can use the PR number here if no issue exists.
issues: [29803]

# (Optional) One or more lines of additional information to render under the primary note.
# These lines will be padded with 2 spaces and then inserted directly into the document.
# Use pipe (|) for multiline entries.
subtext:

# If your change doesn't affect end users or the exported elements of any package,
# you should instead start your pull request title with [chore] or use the "Skip Changelog" label.
# Optional: The change log or logs in which this entry should be included.
# e.g. '[user]' or '[user, api]'
# Include 'user' if the change is relevant to end users.
# Include 'api' if there is a change to a library API.
# Default: '[user]'
change_logs: [user]
2 changes: 1 addition & 1 deletion processor/metricstransformprocessor/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -107,7 +107,7 @@ processors:
label_set: [labels...]
# aggregation_type defines how data points will be aggregated; if action is aggregate_labels or aggregate_label_values, aggregation_type is required
aggregation_type: {sum, mean, min, max, count, median}
# experimental_scale specifies the scalar to apply to values
# experimental_scale specifies the scalar to apply to values. Scaling exponential histograms inherently involves some loss of accuracy.
experimental_scale: <scalar>
# value_actions contain a list of operations that will be performed on the selected label
value_actions:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -116,6 +116,66 @@ func (b builder) addHistogramDatapointWithMinMaxAndExemplars(start, ts pcommon.T
return b
}

type expHistogramConfig struct {
count uint64
sum float64
min float64
max float64
zeroThreshold float64
zeroCount uint64
scale int32
positiveOffset int32
positiveCount []uint64
negativeOffset int32
negativeCount []uint64
exemplarValues []float64
}

func (b builder) addExpHistogramDatapoint(config expHistogramConfig) builder {
if b.metric.Type() != pmetric.MetricTypeExponentialHistogram {
panic(b.metric.Type().String())
}
dp := b.metric.ExponentialHistogram().DataPoints().AppendEmpty()
dp.SetCount(config.count)
dp.SetSum(config.sum)
dp.SetMin(config.min)
dp.SetMax(config.max)
dp.SetZeroThreshold(config.zeroThreshold)
dp.SetZeroCount(config.zeroCount)
dp.SetScale(config.scale)
dp.Positive().SetOffset(config.positiveOffset)
dp.Positive().BucketCounts().FromRaw(config.positiveCount)
dp.Negative().SetOffset(config.negativeOffset)
dp.Negative().BucketCounts().FromRaw(config.negativeCount)
for ei := 0; ei < len(config.exemplarValues); ei++ {
exemplar := dp.Exemplars().AppendEmpty()
exemplar.SetTimestamp(1)
exemplar.SetDoubleValue(config.exemplarValues[ei])
}
dp.SetStartTimestamp(1)
dp.SetTimestamp(1)
return b
}

func buildExpHistogramBucket(m map[int]uint64) []uint64 {
if len(m) == 0 {
return []uint64{}
}
maxIndex := 0
for index := range m {
if index > maxIndex {
maxIndex = index
}
}

result := make([]uint64, maxIndex+1)
for index, count := range m {
result[index] = count
}

return result
}

// setUnit sets the unit of this metric
func (b builder) setUnit(unit string) builder {
b.metric.SetUnit(unit)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1634,6 +1634,151 @@ var (
addHistogramDatapointWithMinMaxAndExemplars(2, 2, 2, 40, 10, 30, []float64{20}, []uint64{1, 2}, []float64{10, 30}).build(),
},
},
{
name: "metric_experimental_scale_value_exp_histogram",
transforms: []internalTransform{
{
MetricIncludeFilter: internalFilterStrict{include: "metric1"},
Action: Update,
Operations: []internalOperation{
{
configOperation: Operation{
Action: scaleValue,
Scale: 1000,
},
},
},
},
{
MetricIncludeFilter: internalFilterStrict{include: "metric2"},
Action: Update,
Operations: []internalOperation{
{
configOperation: Operation{
Action: scaleValue,
Scale: .1,
},
},
},
},
{
MetricIncludeFilter: internalFilterStrict{include: "metric3"},
Action: Update,
Operations: []internalOperation{
{
configOperation: Operation{
Action: scaleValue,
Scale: 100000,
},
},
},
},
{
MetricIncludeFilter: internalFilterStrict{include: "metric4"},
Action: Update,
Operations: []internalOperation{
{
configOperation: Operation{
Action: scaleValue,
Scale: 42.123,
},
},
},
},
},
in: []pmetric.Metric{
metricBuilder(pmetric.MetricTypeExponentialHistogram, "metric1").
addExpHistogramDatapoint(expHistogramConfig{
count: 5,
sum: 1359,
scale: 4,
min: 10,
max: 500,
zeroThreshold: 5,
zeroCount: 1,
positiveOffset: 53,
positiveCount: buildExpHistogramBucket(map[int]uint64{0: 1, 53: 1, 74: 1, 90: 2}), // 10, 100, 250, 499, 500
exemplarValues: []float64{100, 300},
}).build(),
metricBuilder(pmetric.MetricTypeExponentialHistogram, "metric2").
addExpHistogramDatapoint(expHistogramConfig{
count: 3,
sum: 10100.000123,
scale: 2,
min: 0.000123,
max: 10000,
positiveOffset: -52,
positiveCount: buildExpHistogramBucket(map[int]uint64{0: 1, 78: 1, 105: 1}), // 0.000123, 100, 10000
exemplarValues: []float64{100, 300},
}).build(),
metricBuilder(pmetric.MetricTypeExponentialHistogram, "metric3").
addExpHistogramDatapoint(expHistogramConfig{
count: 3,
sum: 4.3678,
scale: 7,
min: 1.123,
max: 1.789,
positiveOffset: 21,
positiveCount: buildExpHistogramBucket(map[int]uint64{0: 1, 48: 1, 86: 1}), // 1.123, 1.456, 1.789
}).build(),
metricBuilder(pmetric.MetricTypeExponentialHistogram, "metric4").
addExpHistogramDatapoint(expHistogramConfig{
count: 3,
sum: 6.00003,
scale: 20,
min: 2,
max: 2.00002,
negativeOffset: 1048575,
negativeCount: buildExpHistogramBucket(map[int]uint64{0: 1, 8: 1, 16: 1}), // 2, 2.00001, 2.00002
}).build(),
},
out: []pmetric.Metric{
metricBuilder(pmetric.MetricTypeExponentialHistogram, "metric1").
addExpHistogramDatapoint(expHistogramConfig{
count: 5,
sum: 1359000,
scale: 4,
min: 10000,
max: 500000,
zeroThreshold: 5000,
zeroCount: 1,
positiveOffset: 212,
positiveCount: buildExpHistogramBucket(map[int]uint64{0: 1, 53: 1, 74: 1, 90: 2}),
exemplarValues: []float64{100000, 300000},
}).build(),
metricBuilder(pmetric.MetricTypeExponentialHistogram, "metric2").
addExpHistogramDatapoint(expHistogramConfig{
count: 3,
sum: 1010.0000123,
scale: 2,
min: 0.0000123,
max: 1000,
positiveOffset: -65,
positiveCount: buildExpHistogramBucket(map[int]uint64{0: 1, 78: 1, 105: 1}),
exemplarValues: []float64{10, 30},
}).build(),
metricBuilder(pmetric.MetricTypeExponentialHistogram, "metric3").
addExpHistogramDatapoint(expHistogramConfig{
count: 3,
sum: 436780,
scale: 7,
min: 112300,
max: 178900,
positiveOffset: 2147,
positiveCount: buildExpHistogramBucket(map[int]uint64{0: 1, 48: 1, 86: 1}),
}).build(),
metricBuilder(pmetric.MetricTypeExponentialHistogram, "metric4").
addExpHistogramDatapoint(expHistogramConfig{
count: 3,
sum: 252.73926368999997,
scale: 20,
min: 84.246,
max: 84.24684246,
negativeOffset: 6707253,
negativeCount: buildExpHistogramBucket(map[int]uint64{0: 1, 8: 1, 16: 1}),
}).build(),
},
},
{
name: "metric_experimental_scale_with_attr_filtering",
transforms: []internalTransform{
Expand Down
78 changes: 70 additions & 8 deletions processor/metricstransformprocessor/operation_scale_value.go
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,8 @@
package metricstransformprocessor // import "github.com/open-telemetry/opentelemetry-collector-contrib/processor/metricstransformprocessor"

import (
"math"

"go.opentelemetry.io/collector/pdata/pmetric"
)

Expand All @@ -19,6 +21,9 @@ func scaleValueOp(metric pmetric.Metric, op internalOperation, f internalFilter)
case pmetric.MetricTypeHistogram:
scaleHistogramOp(metric, op, f)
return
case pmetric.MetricTypeExponentialHistogram:
scaleExpHistogramOp(metric, op, f)
return
default:
return
}
Expand Down Expand Up @@ -60,14 +65,71 @@ func scaleHistogramOp(metric pmetric.Metric, op internalOperation, f internalFil
bounds.SetAt(bi, bounds.At(bi)*op.configOperation.Scale)
}

for exemplars, ei := dp.Exemplars(), 0; ei < exemplars.Len(); ei++ {
exemplar := exemplars.At(ei)
switch exemplar.ValueType() {
case pmetric.ExemplarValueTypeInt:
exemplar.SetIntValue(int64(float64(exemplar.IntValue()) * op.configOperation.Scale))
case pmetric.ExemplarValueTypeDouble:
exemplar.SetDoubleValue(exemplar.DoubleValue() * op.configOperation.Scale)
}
scaleExemplars(dp.Exemplars(), &op)
}
}

func scaleExpHistogramOp(metric pmetric.Metric, op internalOperation, f internalFilter) {
var dps = metric.ExponentialHistogram().DataPoints()
for i := 0; i < dps.Len(); i++ {
dp := dps.At(i)
if !f.matchAttrs(dp.Attributes()) {
continue
}

if dp.HasSum() {
dp.SetSum(dp.Sum() * op.configOperation.Scale)
}
if dp.HasMin() {
dp.SetMin(dp.Min() * op.configOperation.Scale)
}
if dp.HasMax() {
dp.SetMax(dp.Max() * op.configOperation.Scale)
}

dp.SetZeroThreshold(dp.ZeroThreshold() * op.configOperation.Scale)

// For the buckets, we only need to change the offset.
// The bucket counts and the scale remain the same.
if len(dp.Positive().BucketCounts().AsRaw()) != 0 {
dp.Positive().SetOffset(updateOffset(dp.Scale(), dp.Positive().Offset(), &op))
}

if len(dp.Negative().BucketCounts().AsRaw()) != 0 {
dp.Negative().SetOffset(updateOffset(dp.Scale(), dp.Negative().Offset(), &op))
}

scaleExemplars(dp.Exemplars(), &op)
}
}

func updateOffset(scale int32, offset int32, op *internalOperation) int32 {
// Take the middle of the first bucket.
base := math.Pow(2, math.Pow(2, float64(-scale)))
value := (math.Pow(base, float64(offset)) + math.Pow(base, float64(offset+1))) / 2

// Scale it according to the config.
scaledValue := value * op.configOperation.Scale

// Find the new offset by mapping the scaled value.
return mapToIndex(scaledValue, int(scale))
}

// mapToIndex returns the index that corresponds to the given value on the scale.
// See https://opentelemetry.io/docs/specs/otel/metrics/data-model/#all-scales-use-the-logarithm-function.
func mapToIndex(value float64, scale int) int32 {
scaleFactor := math.Ldexp(math.Log2E, scale)
return int32(math.Ceil(math.Log(value)*scaleFactor) - 1)
}

func scaleExemplars(exemplars pmetric.ExemplarSlice, op *internalOperation) {
for e, ei := exemplars, 0; ei < e.Len(); ei++ {
exemplar := e.At(ei)
switch exemplar.ValueType() {
case pmetric.ExemplarValueTypeInt:
exemplar.SetIntValue(int64(float64(exemplar.IntValue()) * op.configOperation.Scale))
case pmetric.ExemplarValueTypeDouble:
exemplar.SetDoubleValue(exemplar.DoubleValue() * op.configOperation.Scale)
}
}
}

0 comments on commit 7068fd9

Please sign in to comment.