Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Docs] translate changelog.md into Chinese #167

Merged
merged 1 commit into from
Jan 4, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
102 changes: 51 additions & 51 deletions docs/zh_cn/changelog.md
Original file line number Diff line number Diff line change
@@ -1,72 +1,72 @@
# Changelog
# 变更日志

## MMSelfSup

### v0.4.0 (13/12/2021)
### v0.5.0 (16/12/2021)

#### Highlight
* Released with code refactor.
* Add 3 new self-supervised learning algorithms.
* Support benchmarks with MMDet and MMSeg.
* Add comprehensive documents.
#### 亮点
* 代码重构后发版。
* 添加 3 个新的自监督学习算法。
* 支持 MMDet MMSeg 的基准测试。
* 添加全面的文档。

#### Refactor
* Merge redundant dataset files.
* Adapt to new version of MMCV and remove old version related codes.
* Inherit MMCV BaseModule.
* Optimize directory.
* Rename all config files.
#### 重构
* 合并冗余数据集文件。
* 适配新版 MMCV,去除旧版相关代码。
* 继承 MMCV BaseModule
* 优化目录结构。
* 重命名所有配置文件。

#### New Features
* Add SwAV, SimSiam, DenseCL algorithm.
* Add tsne visualization tools.
* Support MMCV version fp16.
#### 新特性
* 添加 SwAVSimSiamDenseCL 算法。
* 添加 t-SNE 可视化工具。
* 支持 MMCV 版本 fp16

#### Benchmarks
* More benchmarking results, including classification, detection and segmentation.
* Support some new datasets in downstream tasks.
* Launch MMDet and MMSeg training with MIM.
#### 基准
* 更多基准测试结果,包括分类、检测和分割。
* 支持下游任务中的一些新数据集。
* 使用 MIM 启动 MMDet MMSeg 训练。

#### Docs
* Refactor README, getting_started, install, model_zoo files.
* Add data_prepare file.
* Add comprehensive tutorials.
#### 文档
* 重构 READMEgetting_startedinstallmodel_zoo 文档。
* 添加数据准备文档。
* 添加全面的教程。


## OpenSelfSup (History)
## OpenSelfSup (历史)

### v0.3.0 (14/10/2020)

#### Highlight
* Support Mixed Precision Training
* Improvement of GaussianBlur doubles the training speed
* More benchmarking results
#### 亮点
* 支持混合精度训练。
* 改进 GaussianBlur 使训练速度加倍。
* 更多基准测试结果。

#### Bug Fixes
* Fix bugs in moco v2, now the results are reproducible.
* Fix bugs in byol.
#### Bug 修复
* 修复 moco v2 中的 bugs,现在结果可复现。
* 修复 byol 中的 bugs。

#### New Features
* Mixed Precision Training
* Improvement of GaussianBlur doubles the training speed of MoCo V2, SimCLR, BYOL
* More benchmarking results, including Places, VOC, COCO
#### 新特性
* 混合精度训练。
* 改进 GaussianBlur 使 MoCo V2SimCLRBYOL 的训练速度加倍。
* 更多基准测试结果,包括 PlacesVOCCOCO

### v0.2.0 (26/6/2020)

#### Highlights
* Support BYOL
* Support semi-supervised benchmarks
#### 亮点
* 支持 BYOL
* 支持半监督基准测试。

#### Bug Fixes
* Fix hash id in publish_model.py
#### Bug 修复
* 修复 publish_model.py 中的哈希 id。

#### New Features
#### 新特性

* Support BYOL.
* Separate train and test scripts in linear/semi evaluation.
* Support semi-supevised benchmarks: benchmarks/dist_train_semi.sh.
* Move benchmarks related configs into configs/benchmarks/.
* Provide benchmarking results and model download links.
* Support updating network every several iterations.
* Support LARS optimizer with nesterov.
* Support excluding specific parameters from LARS adaptation and weight decay required in SimCLR and BYOL.
* 支持 BYOL
* 在线性和半监督评估中将训练和测试脚本分开。
* 支持半监督基准测试:benchmarks/dist_train_semi.sh
* 将基准测试相关的配置文件移动到 configs/benchmarks/
* 提供基准测试结果和模型下载链接。
* 支持每隔几次迭代更新网络。
* 支持带有 Nesterov 的 LARS 优化器。
* 支持 SimCLR 和 BYOL 从 LARS 适应和权重衰减中排除特定参数的需求。