Skip to content

Commit

Permalink
[Benchmark] rename linear probing config file names (#281)
Browse files Browse the repository at this point in the history
* [Benchmark] rename linear probing config file names

* update config links
  • Loading branch information
fangyixiao18 authored Apr 26, 2022
1 parent b496a19 commit c0d2680
Show file tree
Hide file tree
Showing 23 changed files with 31 additions and 31 deletions.
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
_base_ = 'resnet50_8xb32-steplr-100e_in1k.py'
_base_ = 'resnet50_linear-8xb32-steplr-100e_in1k.py'

# model settings
model = dict(with_sobel=True, backbone=dict(in_channels=2, frozen_stages=4))
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
_base_ = 'resnet50_mhead_8xb32-steplr-90e_in1k.py'
_base_ = 'resnet50_mhead_linear-8xb32-steplr-90e_in1k.py'

# model settings
model = dict(with_sobel=True, backbone=dict(in_channels=2, frozen_stages=4))
4 changes: 2 additions & 2 deletions configs/selfsup/byol/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,9 +34,9 @@ Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

#### ImageNet Linear Evaluation

The **Feature1 - Feature5** don't have the GlobalAveragePooling, the feature map is pooled to the specific dimensions and then follows a Linear layer to do the classification. Please refer to [resnet50_mhead_8xb32-steplr-90e.py](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_mhead_8xb32-steplr-90e_in1k.py) for details of config.
The **Feature1 - Feature5** don't have the GlobalAveragePooling, the feature map is pooled to the specific dimensions and then follows a Linear layer to do the classification. Please refer to [resnet50_mhead_linear-8xb32-steplr-90e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_mhead_linear-8xb32-steplr-90e_in1k.py) for details of config.

The **AvgPool** result is obtained from Linear Evaluation with GlobalAveragePooling. Please refer to [resnet50_8xb32-steplr-100e_in1k.py](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_8xb32-steplr-100e_in1k.py) for details of config.
The **AvgPool** result is obtained from Linear Evaluation with GlobalAveragePooling. Please refer to [resnet50_linear-8xb32-steplr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_linear-8xb32-steplr-100e_in1k.py) for details of config.

| Self-Supervised Config | Feature1 | Feature2 | Feature3 | Feature4 | Feature5 | AvgPool |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------ | -------- | -------- | -------- | -------- | -------- | ------- |
Expand Down
4 changes: 2 additions & 2 deletions configs/selfsup/deepcluster/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,9 +34,9 @@ Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

#### ImageNet Linear Evaluation

The **Feature1 - Feature5** don't have the GlobalAveragePooling, the feature map is pooled to the specific dimensions and then follows a Linear layer to do the classification. Please refer to [resnet50_mhead_8xb32-steplr-90e.py](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_mhead_8xb32-steplr-90e_in1k.py) for details of config.
The **Feature1 - Feature5** don't have the GlobalAveragePooling, the feature map is pooled to the specific dimensions and then follows a Linear layer to do the classification. Please refer to [resnet50_mhead_linear-8xb32-steplr-90e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_mhead_linear-8xb32-steplr-90e_in1k.py) for details of config.

The **AvgPool** result is obtained from Linear Evaluation with GlobalAveragePooling. Please refer to [resnet50_8xb32-steplr-100e_in1k.py](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_8xb32-steplr-100e_in1k.py) for details of config.
The **AvgPool** result is obtained from Linear Evaluation with GlobalAveragePooling. Please refer to [resnet50_linear-8xb32-steplr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_linear-8xb32-steplr-100e_in1k.py) for details of config.

| Self-Supervised Config | Feature1 | Feature2 | Feature3 | Feature4 | Feature5 | AvgPool |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -------- | -------- | -------- | -------- | -------- | ------- |
Expand Down
4 changes: 2 additions & 2 deletions configs/selfsup/densecl/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,9 +34,9 @@ Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

#### ImageNet Linear Evaluation

The **Feature1 - Feature5** don't have the GlobalAveragePooling, the feature map is pooled to the specific dimensions and then follows a Linear layer to do the classification. Please refer to [resnet50_mhead_8xb32-steplr-90e.py](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_mhead_8xb32-steplr-90e_in1k.py) for details of config.
The **Feature1 - Feature5** don't have the GlobalAveragePooling, the feature map is pooled to the specific dimensions and then follows a Linear layer to do the classification. Please refer to [resnet50_mhead_linear-8xb32-steplr-90e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_mhead_linear-8xb32-steplr-90e_in1k.py) for details of config.

The **AvgPool** result is obtained from Linear Evaluation with GlobalAveragePooling. Please refer to [resnet50_8xb32-steplr-100e_in1k.py](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_8xb32-steplr-100e_in1k.py) for details of config.
The **AvgPool** result is obtained from Linear Evaluation with GlobalAveragePooling. Please refer to [resnet50_linear-8xb32-steplr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_linear-8xb32-steplr-100e_in1k.py) for details of config.

| Self-Supervised Config | Feature1 | Feature2 | Feature3 | Feature4 | Feature5 | AvgPool |
| -------------------------------------------------------------------------------------------------------------------------------------------------- | -------- | -------- | -------- | -------- | -------- | ------- |
Expand Down
6 changes: 3 additions & 3 deletions configs/selfsup/mae/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,9 +35,9 @@ for 400 epochs, the details are below:



| Backbone | Pre-train epoch | Fine-tuning Top-1 | Pre-train Config | Fine-tuning Config | Download |
| :------: | :-------------: | :---------------: | :-------------------------------------------------: | :---------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| ViT-B/16 | 400 | 83.1 | [config](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mae/mae_vit-b-p16_8xb512-coslr-400e_in1k.py) | [config](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/vit-b-p16_ft-8xb128-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/mae/mae_vit-base-p16_8xb512-coslr-400e_in1k-224_20220223-85be947b.pth) | [log](https://download.openmmlab.com/mmselfsup/mae/mae_vit-base-p16_8xb512-coslr-300e_in1k-224_20220210_140925.log.json) |
| Backbone | Pre-train epoch | Fine-tuning Top-1 | Pre-train Config | Fine-tuning Config | Download |
| :------: | :-------------: | :---------------: | :-----------------------------------------------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| ViT-B/16 | 400 | 83.1 | [config](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mae/mae_vit-b-p16_8xb512-coslr-400e_in1k.py) | [config](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/vit-base-p16_ft-8xb128-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/mae/mae_vit-base-p16_8xb512-coslr-400e_in1k-224_20220223-85be947b.pth) | [log](https://download.openmmlab.com/mmselfsup/mae/mae_vit-base-p16_8xb512-coslr-300e_in1k-224_20220210_140925.log.json) |


## Citation
Expand Down
4 changes: 2 additions & 2 deletions configs/selfsup/mocov2/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,9 +34,9 @@ Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

#### ImageNet Linear Evaluation

The **Feature1 - Feature5** don't have the GlobalAveragePooling, the feature map is pooled to the specific dimensions and then follows a Linear layer to do the classification. Please refer to [resnet50_mhead_8xb32-steplr-90e.py](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_mhead_8xb32-steplr-90e_in1k.py) for details of config.
The **Feature1 - Feature5** don't have the GlobalAveragePooling, the feature map is pooled to the specific dimensions and then follows a Linear layer to do the classification. Please refer to [resnet50_mhead_linear-8xb32-steplr-90e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_mhead_linear-8xb32-steplr-90e_in1k.py) for details of config.

The **AvgPool** result is obtained from Linear Evaluation with GlobalAveragePooling. Please refer to [resnet50_8xb32-steplr-100e_in1k.py](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_8xb32-steplr-100e_in1k.py) for details of config.
The **AvgPool** result is obtained from Linear Evaluation with GlobalAveragePooling. Please refer to [resnet50_linear-8xb32-steplr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_linear-8xb32-steplr-100e_in1k.py) for details of config.

| Self-Supervised Config | Feature1 | Feature2 | Feature3 | Feature4 | Feature5 | AvgPool |
| ------------------------------------------------------------------------------------------------------------------------------------------------ | -------- | -------- | -------- | -------- | -------- | ------- |
Expand Down
6 changes: 3 additions & 3 deletions configs/selfsup/mocov3/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,9 +26,9 @@ The classification benchmarks includes 4 downstream task datasets, **VOC**, **Im

The **Linear Evaluation** result is obtained by training a linear head upon the pre-trained backbone. Please refer to [vit-small-p16_8xb128-coslr-90e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/vit-small-p16_8xb128-coslr-90e_in1k.py) for details of config.

| Self-Supervised Config | Linear Evaluation |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------- |
| [vit-small-p16_32xb128-fp16-coslr-300e_in1k-224](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mocov3/mocov3_vit-small-p16_32xb128-fp16-coslr-300e_in1k-224.py) | 73.19 |
| Self-Supervised Config | Linear Evaluation |
| --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------- |
| [vit-small-p16_linear-32xb128-fp16-coslr-300e_in1k-224](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mocov3/mocov3_vit-small-p16_linear-32xb128-fp16-coslr-300e_in1k-224.py) | 73.19 |

## Citation

Expand Down
4 changes: 2 additions & 2 deletions configs/selfsup/npid/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -38,9 +38,9 @@ Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

#### ImageNet Linear Evaluation

The **Feature1 - Feature5** don't have the GlobalAveragePooling, the feature map is pooled to the specific dimensions and then follows a Linear layer to do the classification. Please refer to [resnet50_mhead_8xb32-steplr-90e.py](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_mhead_8xb32-steplr-90e_in1k.py) for details of config.
The **Feature1 - Feature5** don't have the GlobalAveragePooling, the feature map is pooled to the specific dimensions and then follows a Linear layer to do the classification. Please refer to [resnet50_mhead_linear-8xb32-steplr-90e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_mhead_linear-8xb32-steplr-90e_in1k.py) for details of config.

The **AvgPool** result is obtained from Linear Evaluation with GlobalAveragePooling. Please refer to [resnet50_8xb32-steplr-100e_in1k.py](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_8xb32-steplr-100e_in1k.py) for details of config.
The **AvgPool** result is obtained from Linear Evaluation with GlobalAveragePooling. Please refer to [resnet50_linear-8xb32-steplr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_linear-8xb32-steplr-100e_in1k.py) for details of config.

| Self-Supervised Config | Feature1 | Feature2 | Feature3 | Feature4 | Feature5 | AvgPool |
| ---------------------------------------------------------------------------------------------------------------------------------------------- | -------- | -------- | -------- | -------- | -------- | ------- |
Expand Down
4 changes: 2 additions & 2 deletions configs/selfsup/odc/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,9 +34,9 @@ Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

#### ImageNet Linear Evaluation

The **Feature1 - Feature5** don't have the GlobalAveragePooling, the feature map is pooled to the specific dimensions and then follows a Linear layer to do the classification. Please refer to [resnet50_mhead_8xb32-steplr-90e.py](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_mhead_8xb32-steplr-90e_in1k.py) for details of config.
The **Feature1 - Feature5** don't have the GlobalAveragePooling, the feature map is pooled to the specific dimensions and then follows a Linear layer to do the classification. Please refer to [resnet50_mhead_linear-8xb32-steplr-90e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_mhead_linear-8xb32-steplr-90e_in1k.py) for details of config.

The **AvgPool** result is obtained from Linear Evaluation with GlobalAveragePooling. Please refer to [resnet50_8xb32-steplr-100e_in1k.py](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_8xb32-steplr-100e_in1k.py) for details of config.
The **AvgPool** result is obtained from Linear Evaluation with GlobalAveragePooling. Please refer to [resnet50_linear-8xb32-steplr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_linear-8xb32-steplr-100e_in1k.py) for details of config.

| Self-Supervised Config | Feature1 | Feature2 | Feature3 | Feature4 | Feature5 | AvgPool |
| -------------------------------------------------------------------------------------------------------------------------------------------- | -------- | -------- | -------- | -------- | -------- | ------- |
Expand Down
4 changes: 2 additions & 2 deletions configs/selfsup/relative_loc/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,9 +34,9 @@ Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.

#### ImageNet Linear Evaluation

The **Feature1 - Feature5** don't have the GlobalAveragePooling, the feature map is pooled to the specific dimensions and then follows a Linear layer to do the classification. Please refer to [resnet50_mhead_8xb32-steplr-90e.py](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_mhead_8xb32-steplr-90e_in1k.py) for details of config.
The **Feature1 - Feature5** don't have the GlobalAveragePooling, the feature map is pooled to the specific dimensions and then follows a Linear layer to do the classification. Please refer to [resnet50_mhead_linear-8xb32-steplr-90e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_mhead_linear-8xb32-steplr-90e_in1k.py) for details of config.

The **AvgPool** result is obtained from Linear Evaluation with GlobalAveragePooling. Please refer to [resnet50_8xb32-steplr-100e_in1k.py](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_8xb32-steplr-100e_in1k.py) for details of config.
The **AvgPool** result is obtained from Linear Evaluation with GlobalAveragePooling. Please refer to [resnet50_linear-8xb32-steplr-100e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/resnet50_linear-8xb32-steplr-100e_in1k.py) for details of config.

| Self-Supervised Config | Feature1 | Feature2 | Feature3 | Feature4 | Feature5 | AvgPool |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------ | -------- | -------- | -------- | -------- | -------- | ------- |
Expand Down
Loading

0 comments on commit c0d2680

Please sign in to comment.