Skip to content

Commit

Permalink
Update configs of Detic (#11017)
Browse files Browse the repository at this point in the history
  • Loading branch information
ryylcc authored Oct 12, 2023
1 parent e43268e commit 9f4c326
Show file tree
Hide file tree
Showing 4 changed files with 46 additions and 26 deletions.
44 changes: 22 additions & 22 deletions projects/Detic_new/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ It is recommended to download and extract the dataset somewhere outside the proj

### LVIS

LVIS dataset is adopted as box-labeled data, [LVIS](https://www.lvisdataset.org/) is available from official website or mirror. You need to generate `lvis_v1_train_norare.json` according to the [official prepare datasets](https://github.com/facebookresearch/Detic/blob/main/datasets/README.md#coco-and-lvis) for open-vocabulary LVIS, which removes the labels of 337 rare-class from training. The directory should be like this.
LVIS dataset is adopted as box-labeled data, [LVIS](https://www.lvisdataset.org/) is available from official website or mirror. You need to generate `lvis_v1_train_norare.json` according to the [official prepare datasets](https://github.com/facebookresearch/Detic/blob/main/datasets/README.md#coco-and-lvis) for open-vocabulary LVIS, which removes the labels of 337 rare-class from training. You can also download [lvis_v1_train_norare.json](https://download.openmmlab.com/mmdetection/v3.0/detic/data/lvis/annotations/lvis_v1_train_norare.json) from our backup. The directory should be like this.

```shell
mmdetection
Expand Down Expand Up @@ -60,7 +60,7 @@ mmdetection

### Metadata

`data/metadata/` is the preprocessed meta-data (included in the repo). Please follow the [official instruction](https://github.com/facebookresearch/Detic/blob/main/datasets/README.md#metadata) to pre-process the LVIS dataset. You will generate `lvis_v1_train_cat_info.json` for Federated loss, which contains the frequency of each category of training set of LVIS. In addition, ` lvis_v1_clip_a+cname.npy` is the pre-computed CLIP embeddings for each category of LVIS. The directory should be like this.
`data/metadata/` is the preprocessed meta-data (included in the repo). Please follow the [official instruction](https://github.com/facebookresearch/Detic/blob/main/datasets/README.md#metadata) to pre-process the LVIS dataset. You will generate `lvis_v1_train_cat_info.json` for Federated loss, which contains the frequency of each category of training set of LVIS. In addition, `lvis_v1_clip_a+cname.npy` is the pre-computed CLIP embeddings for each category of LVIS. You can also choose to directly download [lvis_v1_train_cat_info](https://download.openmmlab.com/mmdetection/v3.0/detic/data/metadata/lvis_v1_train_cat_info.json) and [lvis_v1_clip_a+cname.npy](https://download.openmmlab.com/mmdetection/v3.0/detic/data/metadata/lvis_v1_clip_a%2Bcname.npy) form our backup. The directory should be like this.

```shell
mmdetection
Expand Down Expand Up @@ -132,9 +132,9 @@ To train the baseline with box-supervised, run
bash ./tools/dist_train.sh projects/Detic_new/detic_centernet2_r50_fpn_4x_lvis_boxsup.py 8
```

| Model (Config) | mask mAP | mask mAP(official) | mask mAP_rare | mask mAP_rare(officical) | Download |
| :---------------------------------------------------------------------------------------------: | :------: | :----------------: | :-----------: | :----------------------: | :------: |
| [detic_centernet2_r50_fpn_4x_lvis_boxsup](./configs/detic_centernet2_r50_fpn_4x_lvis_boxsup.py) | 31.6 | 31.5 | 26.6 | 25.6 | |
| Model (Config) | mask mAP | mask mAP(official) | mask mAP_rare | mask mAP_rare(officical) |
| :---------------------------------------------------------------------------------------------: | :------: | :----------------: | :-----------: | :----------------------: |
| [detic_centernet2_r50_fpn_4x_lvis_boxsup](./configs/detic_centernet2_r50_fpn_4x_lvis_boxsup.py) | 31.6 | 31.5 | 26.6 | 25.6 |

#### Second stage

Expand Down Expand Up @@ -190,25 +190,25 @@ To finetune the baseline model with image-labeled data, run:
bash ./tools/dist_train.sh projects/Detic_new/detic_centernet2_r50_fpn_4x_lvis_in21k-lvis.py 8
```

| Model (Config) | mask mAP | mask mAP(official) | mask mAP_rare | mask mAP_rare(officical) | Download |
| :-----------------------------------------------------------------------------------------------------: | :------: | :----------------: | :-----------: | :----------------------: | :------: |
| [detic_centernet2_r50_fpn_4x_lvis_in21k-lvis](./configs/detic_centernet2_r50_fpn_4x_lvis_in21k-lvis.py) | 32.9 | 33.2 | 30.9 | 29.7 | |
| Model (Config) | mask mAP | mask mAP(official) | mask mAP_rare | mask mAP_rare(officical) |
| :-----------------------------------------------------------------------------------------------------: | :------: | :----------------: | :-----------: | :----------------------: |
| [detic_centernet2_r50_fpn_4x_lvis_in21k-lvis](./configs/detic_centernet2_r50_fpn_4x_lvis_in21k-lvis.py) | 32.9 | 33.2 | 30.9 | 29.7 |

#### Standard LVIS Results

| Model (Config) | mask mAP | mask mAP(official) | mask mAP_rare | mask mAP_rare(officical) | Download |
| :-----------------------------------------------------------------------------------------------------------: | :------: | :----------------: | :-----------: | :----------------------: | :------: |
| [detic_centernet2_r50_fpn_4x_lvis_boxsup](./configs/detic_centernet2_r50_fpn_4x_lvis_boxsup.py) | 31.6 | 31.5 | 26.6 | 25.6 | |
| [detic_centernet2_r50_fpn_4x_lvis_in21k-lvis](./configs/detic_centernet2_r50_fpn_4x_lvis_in21k-lvis.py) | 32.9 | 33.2 | 30.9 | 29.7 | |
| [detic_centernet2_swin-b_fpn_4x_lvis_boxsup](./configs/detic_centernet2_swin-b_fpn_4x_lvis_boxsup.py) | 40.7 | 40.7 | 38.0 | 35.9 | |
| [detic_centernet2_swin-b_fpn_4x_lvis_in21k-lvis](./configs/detic_centernet2_swin-b_fpn_4x_lvis_in21k-lvis.py) | 41.7 | 41.7 | 41.7 | 41.7 | |
| Model (Config) | mask mAP | mask mAP(official) | mask mAP_rare | mask mAP_rare(officical) | Download |
| :-----------------------------------------------------------------------------------------------------------: | :------: | :----------------: | :-----------: | :----------------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [detic_centernet2_r50_fpn_4x_lvis_boxsup](./configs/detic_centernet2_r50_fpn_4x_lvis_boxsup.py) | 31.6 | 31.5 | 26.6 | 25.6 | [model](https://download.openmmlab.com/mmdetection/v3.0/detic/detic_centernet2_r50_fpn_4x_lvis_boxsup/detic_centernet2_r50_fpn_4x_lvis_boxsup_20230911_233514-54116677.pth) \| [log](https://download.openmmlab.com/mmdetection/v3.0/detic/detic_centernet2_r50_fpn_4x_lvis_boxsup/detic_centernet2_r50_fpn_4x_lvis_boxsup_20230911_233514.log.json) |
| [detic_centernet2_r50_fpn_4x_lvis_in21k-lvis](./configs/detic_centernet2_r50_fpn_4x_lvis_in21k-lvis.py) | 32.9 | 33.2 | 30.9 | 29.7 | [model](https://download.openmmlab.com/mmdetection/v3.0/detic/detic_centernet2_r50_fpn_4x_lvis_in21k-lvis/detic_centernet2_r50_fpn_4x_lvis_in21k-lvis_20230912_040619-9e7a3258.pth) \| [log](https://download.openmmlab.com/mmdetection/v3.0/detic/detic_centernet2_r50_fpn_4x_lvis_in21k-lvis/detic_centernet2_r50_fpn_4x_lvis_in21k-lvis_20230912_040619.log.json) |
| [detic_centernet2_swin-b_fpn_4x_lvis_boxsup](./configs/detic_centernet2_swin-b_fpn_4x_lvis_boxsup.py) | 40.7 | 40.7 | 38.0 | 35.9 | [model](https://download.openmmlab.com/mmdetection/v3.0/detic/detic_centernet2_swin-b_fpn_4x_lvis_boxsup/detic_centernet2_swin-b_fpn_4x_lvis_boxsup_20230825_061737-328e85f9.pth) \| [log](https://download.openmmlab.com/mmdetection/v3.0/detic/detic_centernet2_swin-b_fpn_4x_lvis_boxsup/detic_centernet2_swin-b_fpn_4x_lvis_boxsup_20230825_061737.log.json) |
| [detic_centernet2_swin-b_fpn_4x_lvis_in21k-lvis](./configs/detic_centernet2_swin-b_fpn_4x_lvis_in21k-lvis.py) | 41.7 | 41.7 | 41.7 | 41.7 | [model](https://download.openmmlab.com/mmdetection/v3.0/detic/detic_centernet2_swin-b_fpn_4x_lvis_in21k-lvis/detic_centernet2_swin-b_fpn_4x_lvis_in21k-lvis_20230926_235410-0c152391.pth) \| [log](https://download.openmmlab.com/mmdetection/v3.0/detic/detic_centernet2_swin-b_fpn_4x_lvis_in21k-lvis/detic_centernet2_swin-b_fpn_4x_lvis_in21k-lvis_20230926_235410.log.json) |

#### Open-vocabulary LVIS Results

| Model (Config) | mask mAP | mask mAP(official) | mask mAP_rare | mask mAP_rare(officical) | Download |
| :-------------------------------------------------------------------------------------------------------------: | :------: | :----------------: | :-----------: | :----------------------: | :------: |
| [detic_centernet2_r50_fpn_4x_lvisbase_boxsup](./configs/detic_centernet2_r50_fpn_4x_lvisbase_boxsup.py) | 30.4 | 30.2 | 16.2 | 16.4 | |
| [detic_centernet2_r50_fpn_4x_lvisbase_in21k-lvis](./configs/detic_centernet2_r50_fpn_4x_lvisbase_in21k-lvis.py) | 32.6 | 32.4 | 27.4 | 24.9 | |
| Model (Config) | mask mAP | mask mAP(official) | mask mAP_rare | mask mAP_rare(officical) | Download |
| :---------------------------------------------------------------------------------------------------------------: | :------: | :----------------: | :-----------: | :----------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [detic_centernet2_r50_fpn_4x_lvis-base_boxsup](./configs/detic_centernet2_r50_fpn_4x_lvis-base_boxsup.py) | 30.4 | 30.2 | 16.2 | 16.4 | [model](https://download.openmmlab.com/mmdetection/v3.0/detic/detic_centernet2_r50_fpn_4x_lvis-base_boxsup/detic_centernet2_r50_fpn_4x_lvis-base_boxsup_20230921_180638-c1685ee2.pth) \| [log](https://download.openmmlab.com/mmdetection/v3.0/detic/detic_centernet2_r50_fpn_4x_lvis-base_boxsup/detic_centernet2_r50_fpn_4x_lvis-base_boxsup_20230921_180638.log.json) |
| [detic_centernet2_r50_fpn_4x_lvis-base_in21k-lvis](./configs/detic_centernet2_r50_fpn_4x_lvis-base_in21k-lvis.py) | 32.6 | 32.4 | 27.4 | 24.9 | [model](https://download.openmmlab.com/mmdetection/v3.0/detic/detic_centernet2_r50_fpn_4x_lvis-base_in21k-lvis/detic_centernet2_r50_fpn_4x_lvis-base_in21k-lvis_20230925_014315-2d2cc8b7.pth) \| [log](https://download.openmmlab.com/mmdetection/v3.0/detic/detic_centernet2_r50_fpn_4x_lvis-base_in21k-lvis/detic_centernet2_r50_fpn_4x_lvis-base_in21k-lvis_20230925_014315.log.json) |

### Testing

Expand All @@ -224,10 +224,10 @@ python ./tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE}

The models are converted from the official model zoo.

| Model (Config) | mask mAP | mask mAP_novel |
| :-------------------------------------------------------------------------------------------------------------------: | :------: | :------------: |
| [detic_centernet2_swin-b_fpn_4x_lvisbase_boxsup](./configs/detic_centernet2_swin-b_fpn_4x_lvisbase_boxsup.py) | 38.4 | 21.9 |
| [detic_centernet2_swin-b_fpn_4x_lvisbase_in21k-lvis](./configs/detic_centernet2_swin-b_fpn_4x_lvisbase_in21k-lvis.py) | 40.7 | 34.0 |
| Model (Config) | mask mAP | mask mAP_novel | Download |
| :---------------------------------------------------------------------------------------------------------------------: | :------: | :------------: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [detic_centernet2_swin-b_fpn_4x_lvis-base_boxsup](./configs/detic_centernet2_swin-b_fpn_4x_lvis-base_boxsup.py) | 38.4 | 21.9 | [model](https://download.openmmlab.com/mmdetection/v3.0/detic/detic_centernet2_swin-b_fpn_4x_lvis-base_boxsup/detic_centernet2_swin-b_fpn_4x_lvis-base_boxsup-481281c8.pth) |
| [detic_centernet2_swin-b_fpn_4x_lvis-base_in21k-lvis](./configs/detic_centernet2_swin-b_fpn_4x_lvis-base_in21k-lvis.py) | 40.7 | 34.0 | [model](https://download.openmmlab.com/mmdetection/v3.0/detic/detic_centernet2_swin-b_fpn_4x_lvis-base_in21k-lvis/detic_centernet2_swin-b_fpn_4x_lvis-base_in21k-lvis-ec91245d.pth) |

###### Note:

Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
_base_ = './detic_centernet2_r50_fpn_4x_lvis_boxsup.py'

dataset_type = ['LVISV1Dataset', 'ImageNetLVISV1Dataset']
image_size_det = (640, 640)
image_size_cls = (320, 320)

Expand Down Expand Up @@ -52,7 +52,7 @@
dataset=dict(
type='LVISV1Dataset',
data_root='data/lvis/',
ann_file='annotations/lvis_v1_train.json',
ann_file='annotations/lvis_v1_train_norare.json',
data_prefix=dict(img=''),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=train_pipeline_det,
Expand All @@ -76,6 +76,18 @@
type='MultiDataAspectRatioBatchSampler', num_datasets=2),
dataset=dict(type='ConcatDataset', datasets=[dataset_det, dataset_cls]))

param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0,
end=1000),
dict(
type='CosineAnnealingLR',
begin=0,
by_epoch=False,
T_max=90000,
)
]

load_from = './first_stage/detic_centernet2_r50_fpn_4x_lvis-base_boxsup.pth'

find_unused_parameters = True
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
_base_ = 'mmdet::_base_/default_runtime.py'
dataset_type = 'LVISV1Dataset'
custom_imports = dict(
imports=['projects.Detic_new.detic'], allow_failed_imports=False)

Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
_base_ = './detic_centernet2_r50_fpn_4x_lvis_boxsup.py'

dataset_type = ['LVISV1Dataset', 'ImageNetLVISV1Dataset']
image_size_det = (640, 640)
image_size_cls = (320, 320)

Expand Down Expand Up @@ -76,7 +76,14 @@

param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000)
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0,
end=1000),
dict(
type='CosineAnnealingLR',
begin=0,
by_epoch=False,
T_max=90000,
)
]

load_from = './first_stage/detic_centernet2_r50_fpn_4x_lvis_boxsup.pth'
Expand Down

0 comments on commit 9f4c326

Please sign in to comment.