Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update mlflow to avoid CVE-2024-27132 and CVE-2024-27133 #1609

Merged
merged 7 commits into from
Apr 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion ci/conda/recipes/morpheus/meta.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -91,7 +91,7 @@ outputs:
- grpcio # Version determined from cudf
- libmrc
- libwebp>=1.3.2 # Required for CVE mitigation: https://nvd.nist.gov/vuln/detail/CVE-2023-4863
- mlflow>=2.2.1,<3
- mlflow>=2.10.0,<3
- mrc
- networkx>=2.8
- numpydoc =1.5.*
Expand Down
2 changes: 1 addition & 1 deletion conda/environments/all_cuda-121_arch-x86_64.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@ dependencies:
- librdkafka>=1.9.2,<1.10.0a0
- libtool
- libwebp=1.3.2
- mlflow=2.9.2
- mlflow>=2.10.0,<3
- mrc=24.03
- myst-parser=0.18.1
- nbsphinx
Expand Down
2 changes: 1 addition & 1 deletion conda/environments/dev_cuda-121_arch-x86_64.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ dependencies:
- isort
- librdkafka>=1.9.2,<1.10.0a0
- libtool
- mlflow=2.9.2
- mlflow>=2.10.0,<3
- mrc=24.03
- myst-parser=0.18.1
- nbsphinx
Expand Down
2 changes: 1 addition & 1 deletion conda/environments/examples_cuda-121_arch-x86_64.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ dependencies:
- jsonpatch>=1.33
- kfp
- libwebp=1.3.2
- mlflow=2.9.2
- mlflow>=2.10.0,<3
- networkx=2.8.8
- newspaper3k=0.2
- nodejs=18.*
Expand Down
2 changes: 1 addition & 1 deletion conda/environments/runtime_cuda-121_arch-x86_64.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ dependencies:
- elasticsearch==8.9.0
- feedparser=6.0.10
- grpcio=1.59
- mlflow=2.9.2
- mlflow>=2.10.0,<3
- networkx=2.8.8
- numpydoc=1.5
- nvtabular=23.08.00
Expand Down
4 changes: 2 additions & 2 deletions dependencies.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -253,7 +253,7 @@ dependencies:
- elasticsearch==8.9.0
- feedparser=6.0.10
- grpcio=1.59
- mlflow=2.9.2
- mlflow>=2.10.0,<3
- networkx=2.8.8
- nvtabular=23.08.00
- pydantic
Expand Down Expand Up @@ -301,7 +301,7 @@ dependencies:
- dask=2023.12.1
- distributed=2023.12.1
- kfp
- mlflow=2.9.2
- mlflow>=2.10.0,<3
- papermill=2.4.0
- s3fs=2023.12.2

Expand Down
2 changes: 1 addition & 1 deletion examples/digital_fingerprinting/production/conda_env.yml
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ dependencies:
- distributed
- kfp
- librdkafka
- mlflow>=2.2.1,<3
- mlflow>=2.10.0,<3
- nodejs=18.*
- nvtabular=23.06
- papermill
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ RUN apt update && \
rm -rf /var/cache/apt/* /var/lib/apt/lists/*

# Install python packages
RUN pip install "mlflow >=2.2.1,<3" boto3 pymysql pyyaml
RUN pip install "mlflow >=2.10.0,<3" boto3 pymysql pyyaml

# We run on port 5000
EXPOSE 5000
Expand Down
18 changes: 9 additions & 9 deletions models/mlflow/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,8 @@ are included for publishing TensorRT, ONNX and FIL models to your MLflow Model R

## Requirements

* MLflow (tested on 1.24.0)
* Python (tested on 3.8)
* MLflow (tested on 2.11.3)
* Python (tested on 3.11)

## Install Triton Docker Image

Expand Down Expand Up @@ -89,7 +89,7 @@ Create an MLflow container with a volume mounting the Triton model repository:
```bash
docker run -it -v /opt/triton_models:/triton_models \
--env TRITON_MODEL_REPO=/triton_models \
--env MLFLOW_TRACKING_URI=localhost:5000 \
--env MLFLOW_TRACKING_URI="http://localhost:5000" \
--gpus '"device=0"' \
--net=host \
--rm \
Expand All @@ -115,29 +115,29 @@ The `publish_model_to_mlflow` script is used to publish `triton` flavor models t
```
python publish_model_to_mlflow.py \
--model_name sid-minibert-onnx \
--model_directory <path-to-morpheus-models-repo>/models/triton-model-repo/sid-minibert-onnx \
--model_directory /triton_models/triton-model-repo/sid-minibert-onnx \
--flavor triton
```

## Deployments

The Triton `mlflow-triton-plugin` is installed on this container and can be used to deploy your models from MLflow to Triton Inference Server. The following are examples of how the plugin is used with the `sid-minibert-onnx` model that we published to MLflow above. For more information about the
`mlflow-triton-plugin`, refer to Triton's [documentation](https://github.com/triton-inference-server/server/tree/r23.01/deploy/mlflow-triton-plugin)
`mlflow-triton-plugin`, refer to Triton's [documentation](https://github.com/triton-inference-server/server/tree/r24.03/deploy/mlflow-triton-plugin)

### Create Deployment

To create a deployment use the following command

##### CLI
```
mlflow deployments create -t triton --flavor triton --name sid-minibert-onnx -m models:/sid-minibert-onnx/1
mlflow deployments create -t triton --flavor triton --name sid-minibert-onnx -m "models:/sid-minibert-onnx/1"
```

##### Python API
```
from mlflow.deployments import get_deploy_client
client = get_deploy_client('triton')
client.create_deployment("sid-minibert-onnx", " models:/sid-minibert-onnx/1", flavor="triton")
client.create_deployment("sid-minibert-onnx", "models:/sid-minibert-onnx/1", flavor="triton")
```

### Delete Deployment
Expand All @@ -158,14 +158,14 @@ client.delete_deployment("sid-minibert-onnx")

##### CLI
```
mlflow deployments update -t triton --flavor triton --name sid-minibert-onnx -m models:/sid-minibert-onnx/2
mlflow deployments update -t triton --flavor triton --name sid-minibert-onnx -m "models:/sid-minibert-onnx/1"
```

##### Python API
```
from mlflow.deployments import get_deploy_client
client = get_deploy_client('triton')
client.update_deployment("sid-minibert-onnx", "models:/sid-minibert-onnx/2", flavor="triton")
client.update_deployment("sid-minibert-onnx", "models:/sid-minibert-onnx/1", flavor="triton")
```

### List Deployments
Expand Down
2 changes: 1 addition & 1 deletion models/mlflow/docker/Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ RUN sed -i 's/conda activate base/conda activate mlflow/g' ~/.bashrc
SHELL ["/opt/conda/bin/conda", "run", "-n", "mlflow", "/bin/bash", "-c"]

ARG TRITON_DIR=/mlflow/triton-inference-server
ARG TRITON_VER=r24.01
ARG TRITON_VER=r24.03

RUN mkdir ${TRITON_DIR} && \
cd ${TRITON_DIR} && \
Expand Down
Loading