Skip to content

Official dataset and pytorch implementation for the paper: `Learning Dual-Level Deformable Implicit Representation for Real-World Scale Arbitrary Super-Resolution'[ECCV24]

Notifications You must be signed in to change notification settings

nonozhizhiovo/RealArbiSR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Learning Dual-Level Implicit Representation for Real-World Scale Arbitrary Super-Resolution [ECCV24]

1. RealArbiSR Dataset Preparation

Version 2

In version 2, we further refine the dataset quality and increase the size of x1.7/x2.3/x2.7/x3.3/x3.7 testset from 83 scenes to 100 scenes.

Dataset Version 2 is available at RealArbiSRdatasetv2 - Google Drive

The pretrained models and the PSNR results of RealArbiSR dataset Version 2 are listed below:

EDSR-DDIR-v2

RDN-DDIR-v2

Methods PSNR x1.5 x2.0 x2.5 x3.0 x3.5 x4.0
Bicubic 34.87 31.61 29.81 28.56 27.64 27.00
EDSR-LIIF 36.55 33.63 31.76 30.49 29.47 28.80
EDSR-LTE 36.56 33.63 31.75 30.48 29.52 28.84
EDSR-CiaoSR 36.67 33.84 32.01 30.74 29.75 29.01
EDSR-DDIR 36.91 34.09 32.20 30.94 29.94 29.19
RDN-LIIF 36.64 33.84 31.94 30.69 29.69 29.00
RDN-LTE 36.60 33.80 31.95 30.67 29.70 29.00
RDN-CiaoSR 36.85 34.07 32.18 30.87 29.86 29.10
RDN-DDIR 37.04 34.28 32.35 31.05 30.04 29.26
Methods PSNR x1.7 x2.3 x2.7 x3.3 x3.7
Bicubic 31.31 28.54 27.51 26.42 25.83
EDSR-LIIF 33.37 30.57 29.37 28.02 27.32
EDSR-LTE 33.47 30.64 29.40 28.02 27.30
EDSR-CiaoSR 33.04 30.58 29.50 28.23 27.48
EDSR-DDIR 33.71 30.97 29.76 28.37 27.64
RDN-LIIF 33.49 30.71 29.51 28.16 27.43
RDN-LTE 33.54 30.83 29.61 28.23 27.51
RDN-CiaoSR 33.16 30.81 29.74 28.44 27.69
RDN-DDIR 33.77 31.06 29.85 28.46 27.72

Version 1 (used in the original paper)

Dataset is available at RealArbiSRdataset - Google Drive.

Arrange dataset into the path like load/Train/... and load/Test/...

2. DDIR Code

Train

python train_realliif_deform.py --gpu [GPU] --config [CONFIG_NAME] --save_name [SAVE_NAME]

Test on Pretrained Models

The pretrained models (for Verision 1, used in the original paper) can be downloaded from the google drive links below:

EDSR-DDIR

RDN-DDIR

To test at all scale factors:

bash ./scripts/test-realsrarbi-deform.sh [MODEL_PATH] [GPU]

Citation

If you find this code useful in your work then please cite:

@inproceedings{li2025learning,
  title={Learning Dual-Level Deformable Implicit Representation for Real-World Scale Arbitrary Super-Resolution},
  author={Li, Zhiheng and Li, Muheng and Fan, Jixuan and Chen, Lei and Tang, Yansong and Lu, Jiwen and Zhou, Jie},
  booktitle={European Conference on Computer Vision},
  pages={352--368},
  year={2025},
  organization={Springer}
}

Contact

Please contact Zhiheng Li @ lizhihan21@mails.tsinghua.edu.cn if any issue.

Acknowledgements

This code is built on LIIF. We thank the authors for sharing their codes.

About

Official dataset and pytorch implementation for the paper: `Learning Dual-Level Deformable Implicit Representation for Real-World Scale Arbitrary Super-Resolution'[ECCV24]

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published