We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
module { func.func @test_gru_batchwise(%arg0: !torch.vtensor<[3,1,2],f32>, %arg1: !torch.vtensor<[1,18,2],f32>, %arg2: !torch.vtensor<[1,18,6],f32>) -> (!torch.vtensor<[3,1,1,6],f32>, !torch.vtensor<[3,1,6],f32>) attributes {torch.onnx_meta.ir_version = 7 : si64, torch.onnx_meta.opset_version = 14 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} { %none = torch.constant.none %0:2 = torch.operator "onnx.GRU"(%arg0, %arg1, %arg2) {torch.onnx.hidden_size = 6 : si64, torch.onnx.layout = 1 : si64} : (!torch.vtensor<[3,1,2],f32>, !torch.vtensor<[1,18,2],f32>, !torch.vtensor<[1,18,6],f32>) -> (!torch.vtensor<[3,1,1,6],f32>, !torch.vtensor<[3,1,6],f32>) return %0#0, %0#1 : !torch.vtensor<[3,1,1,6],f32>, !torch.vtensor<[3,1,6],f32> } }
reproduce : torch-mlir-opt --convert-torch-onnx-to-torch --torch-lower-to-backend-contract --convert-torch-to-linalg
torch-mlir-opt --convert-torch-onnx-to-torch --torch-lower-to-backend-contract --convert-torch-to-linalg
Looks like the torch-onnx-to-torch is generating invalid ir (shapes don't make sense).
module { func.func @test_gru_defaults(%arg0: !torch.vtensor<[1,3,2],f32>, %arg1: !torch.vtensor<[1,15,2],f32>, %arg2: !torch.vtensor<[1,15,5],f32>) -> !torch.vtensor<[1,3,5],f32> attributes {torch.onnx_meta.ir_version = 7 : si64, torch.onnx_meta.opset_version = 14 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} { %none = torch.constant.none %0:2 = torch.operator "onnx.GRU"(%arg0, %arg1, %arg2) {torch.onnx.hidden_size = 5 : si64} : (!torch.vtensor<[1,3,2],f32>, !torch.vtensor<[1,15,2],f32>, !torch.vtensor<[1,15,5],f32>) -> (!torch.none, !torch.vtensor<[1,3,5],f32>) return %0#1 : !torch.vtensor<[1,3,5],f32> } }
hitting a match failure in torch-onnx-to-torch relating to number of output tensors.
reproduce : torch-mlir-opt --convert-torch-onnx-to-torch
torch-mlir-opt --convert-torch-onnx-to-torch
The text was updated successfully, but these errors were encountered:
Fixed GRU quality issues exposed by e2e tests (#3753)
f0b7ca7
Issue: nod-ai/SHARK-ModelDev#856 Related tests: ![Screenshot 2024-10-01 175305](https://github.com/user-attachments/assets/0dc0901b-058f-427c-a596-9e806fd38836)
knwng
When branches are created from issues, their pull requests are automatically linked.
reproduce :
torch-mlir-opt --convert-torch-onnx-to-torch --torch-lower-to-backend-contract --convert-torch-to-linalg
Looks like the torch-onnx-to-torch is generating invalid ir (shapes don't make sense).
hitting a match failure in torch-onnx-to-torch relating to number of output tensors.
reproduce :
torch-mlir-opt --convert-torch-onnx-to-torch
The text was updated successfully, but these errors were encountered: