Skip to content

PyTorch code for the RetoMaton paper: "Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval" (ICML 2022)

License

Notifications You must be signed in to change notification settings

neulab/retomaton

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RetoMaton: Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval

A neuro-symbolic language model, based on a base neural-LM and an automaton that retrieves examples from the training data. This is an official implementation of the model described in:

Uri Alon, Frank F. Xu, Junxian He, Sudipta Sengupta, Dan Roth, and Graham Neubig,
"Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval"

July 2022 - A Hugging Face 🤗 transformers implementation of RetoMaton and kNN-LM is available at https://github.com/neulab/knn-transformers

June 2022 - Overview tweet!

May 2022 - The paper was accepted to ICML'2022! See you in Baltimore in July 2022 [Poster here]

April 2022 - a talk video is available here: [1-hour video] [5-min video]

Please let us know if anything here is not working as expected, and feel free to create new issues with any questions.

Overview

Results

WikiText-103:

Law-MT, with a based LM that was trained on WMT News Crawl:

Law-MT, with a base LM that was fine-tuned on Law-MT:

Method ppl ppl, saving 50% of the searches
Fine-tuned LM 8.61 8.61
kNN-LM 7.93 8.25
AdaptRet baseline (He et al., 2021) 7.81 7.91
RetoMaton (this work) 7.10 7.15

Table of Contents

Requirements

This repository is a fork of the kNN-LM and based on the fairseq framework.

Dependencies

  • This project is based on python3 and PyTorch 1.9.0. To check PyTorch version:
python3 -c 'import torch; print(torch.__version__)
  • The project also depends on the faiss library. We recommend using the GPU version of faiss:
pip install faiss-gpu

The CPU version can be installed using pip install faiss. On a Macbook, use the Anaconda installation instead:

conda install -c conda-forge pytorch faiss-cpu
  • Finally, from this project's directory, run:
pip install --editable .

Hardware

Experiments for this paper were conducted on a machine that contains 16GB of RAM, and a single NVIDIA RTX 3090 GPU.

Saving the Wikitext-103 datastore requires 200GB of disk space (in fp16, which does not degrade the performance compared to fp32).

Quickstart

Step 0: Clone this repository:

git clone https://github.com/neulab/retomaton
cd retomaton
mkdir -p checkpoints/wt103
mkdir -p checkpoints/law

Step 1: Preparing the data

You can either download our preprocessed Wikitext-103 and Law-MT datasets, or preprocess them yourself.

Download the preprocessed Wikitext-103 dataset:

wget https://retomaton.s3.us-east-2.amazonaws.com/wt103/wiki103_preprocessed.tar.gz
tar -xzvf wiki103_preprocessed.tar.gz

Download the preprocessed Law-MT dataset:

wget https://retomaton.s3.us-east-2.amazonaws.com/law/law_preprocessed.tar.gz
tar -xzvf law_preprocessed.tar.gz

Preprocessing the dataset (not needed if you already downloaded our preprocessed dataset):

We include Fairseq's instructions on how to prepare the data here.

Preprocessing Wikitext-103:
cd examples/language_model/
bash prepare-wikitext-103.sh
cd ../..

TEXT=examples/language_model/wikitext-103
python preprocess.py \
    --only-source \
    --trainpref $TEXT/wiki.train.tokens \
    --validpref $TEXT/wiki.valid.tokens \
    --testpref $TEXT/wiki.test.tokens \
    --destdir data-bin/wikitext-103 \
    --workers 20
Preprocessing Law-MT:

The data is originally from: https://github.com/roeeaharoni/unsupervised-domain-clusters. We used the law/ subdirectory, and only the English "source" files. Then, we re-tokenized the dataset using the model's BPE tokenizer.

The tokenized dataset can be downloaded from:

mkdir -p datasets/law
wget -P datasets/law/ https://retomaton.s3.us-east-2.amazonaws.com/law/law_tokenized.tar.gz
cd datasets/law
tar -xzvf law_tokenized.tar.gz
cd ../../

and then preprocessing it can be performed using:

TEXT=datasets/law
python preprocess.py \
    --only-source \
    --trainpref $TEXT/train.tokenized \
    --validpref $TEXT/dev.en.tokenized \
    --testpref $TEXT/test.en.tokenized \
    --destdir data-bin/law \
    --workers 20

Step 2: Downloading the Base Language Model

The models that we used can be downloaded from the following sources: For Wikitext-103:

wget -P checkpoints/wt103/ https://nlp.stanford.edu/projects/knnlm/wt103_checkpoint_best.pt

For Law-MT:

wget -P checkpoints/law/ https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.en.tar.gz
cd checkpoints/law
tar -xzvf wmt19.en.tar.gz
cd ..

We also include Fairseq's instructions on how to train the language model here:

python train.py --task language_modeling \
    data-bin/wikitext-103 \
    --save-dir checkpoints/ \
    --arch transformer_lm_wiki103 \
    --max-update 286000 --max-lr 1.0 --t-mult 2 --lr-period-updates 270000 --lr-scheduler cosine --lr-shrink 0.75 \
    --warmup-updates 16000 --warmup-init-lr 1e-07 --min-lr 1e-09 --optimizer nag --lr 0.0001 --clip-norm 0.1 \
    --criterion adaptive_loss --max-tokens 3072 --update-freq 3 --tokens-per-sample 3072 --seed 1 \
    --sample-break-mode none --skip-invalid-size-inputs-valid-test --ddp-backend=no_c10d

This model was trained on 8 gpus.

Step 3: Evaluating the base Language Model

To evaluate the base model on the validation set (without any retrieval):

For Wikitext-103:

python eval_lm.py data-bin/wikitext-103 \
    --path checkpoints/wt103/wt103_checkpoint_best.pt \
    --sample-break-mode complete --max-tokens 3072 \
    --context-window 2560 --softmax-batch 1024 --batch-size 2 \
    --gen-subset valid

For Law-MT:

python eval_lm.py data-bin/law \
    --sample-break-mode eos \
    --path checkpoints/law/wmt19.en/model.pt \
    --max-tokens 2048 --context-window 0 --batch-size 2 \
    --gen-subset valid --remove-bpe

Notice that the main difference between the datasets is that in Law-MT we use the flags --remove-bpe and --sample-break-mode eos, and also the --max-tokens and --context-window values are different.

Step 4: Saving the keys and values for the datastore

The next step is to run model evaluation over the entire training set, and save keys and values.

To download the keys and values that we already saved for Wikitext-103:

wget -P checkpoints/wt103/ https://retomaton.s3.us-east-2.amazonaws.com/wt103/dstore16_vals.npy
wget -P checkpoints/wt103/ https://retomaton.s3.us-east-2.amazonaws.com/wt103/dstore16_keys.npy

Note: The keys of Wikitext-103 take 200GB of disk space

To download the keys and values that we already saved for Law-MT:

wget -P checkpoints/law/ https://retomaton.s3.us-east-2.amazonaws.com/law/dstore16_vals.npy
wget -P checkpoints/law/ https://retomaton.s3.us-east-2.amazonaws.com/law/dstore16_keys.npy

To save keys and values (not needed if you already downloaded our keys and values):

for Wikitext-103:
python eval_lm.py data-bin/wikitext-103 \
    --path checkpoints/wt103/wt103_checkpoint_best.pt \
    --sample-break-mode none --max-tokens 3072 \
    --softmax-batch 1024 --batch-size 2 --gen-subset train \
    --context-window 1536 --tokens-per-sample 1536 \
    --dstore-mmap checkpoints/wt103/dstore16 --knn-keytype 'last_ffn_input' \
    --dstore-size 103225485 --model-overrides "{'knn_keytype': 'last_ffn_input'}" \
    --save-knnlm-dstore --dstore-fp16

The total number of tokens in the Wikitext-103 training set is 103227021. The dstore size 103225485 is 1536 tokens less than the total due to the context-window. We want each key to be constructed using a minimum amount of prior context.

For Law-MT:

Following the instructions and using the code of https://github.com/jxhe/efficient-knnlm, we created the datastore using their code:

cd ../efficient-knnlm
python eval_lm.py ../retomaton/data-bin/law \
    --path ../retomaton/checkpoints/law/wmt19.en/model.pt \
    --sample-break-mode eos --max-tokens 2048 \
    --softmax-batch 1024 --batch-size 2 --gen-subset train \
    --context-window 0 --tokens-per-sample 512 \
    --dstore-mmap ../retomaton/checkpoints/law/dstore16 --knn-keytype 'last_ffn_input' \
    --dstore-size 19068709  \
    --log-interval 100 \
    --model-overrides "{'knn_keytype': 'last_ffn_input'}" \
    --dstore-fp16 \
    --save-knnlm-dstore 

Step 5: Building the FAISS index

The FAISS index requires a training stage where it learns an index for accessing the keys quickly. Once this is completed, the keys must all be added to the index. The speed of adding keys to the index depends on the hardware, particularly the amount of RAM available.

To download our index:

Wikitext-103:

wget -P checkpoints/wt103/ https://retomaton.s3.us-east-2.amazonaws.com/wt103/knn16.index

For Law-MT:

wget -P checkpoints/law/ https://retomaton.s3.us-east-2.amazonaws.com/law/knn.19048862.index

To build the FAISS index yourself (not needed if you already downloaded our index):

For Wikitext-103:

DSTORE=checkpoints/wt103/dstore16
DSTORE_SIZE=103225485
INDEX=checkpoints/wt103/knn16.index

For Law-MT:

DSTORE=checkpoints/law/dstore16
DSTORE_SIZE=19068709
INDEX=checkpoints/law/knn16.index

and then for both datasets:

python build_dstore.py \
    --dstore_mmap ${DSTORE} \
    --dstore_size ${DSTORE_SIZE} \
    --faiss_index ${INDEX} \
    --num_keys_to_add_at_a_time 500000 \
    --starting_point 0

Step 6: Evaluating RetoMaton without clustering

To evaluate the model on the validation set:

Wikitext-103:

DSTORE=checkpoints/wt103/dstore16
DSTORE_SIZE=103225485
INDEX=checkpoints/wt103/knn16.index
MODEL=checkpoints/wt103/wt103_checkpoint_best.pt

python eval_lm.py data-bin/wikitext-103 \
    --path ${MODEL} \
    --sample-break-mode complete --max-tokens 3072 \
    --context-window 2560 --softmax-batch 1024000 --batch-size 2 \
    --gen-subset valid --dstore-filename ${DSTORE} \
    --indexfile ${INDEX}  \
    --model-overrides "{'knn_keytype': 'last_ffn_input'}" \
    --k 1024 --lmbda 0.25 --dstore-size ${DSTORE_SIZE} --knn-keytype last_ffn_input \
    --probe 32 --knnlm --dstore-fp16 \
    --knn-sim-func do_not_recomp_l2 --no-load-keys --move-dstore-to-mem \
    --knnlm-gpu --min-knns 1 --max-knns 1024

To encourage the model to perform a full kNN search more frequently and thus increase accuracy and reduce perplexity, use a larger value of --min-knns such as 100. Using --min-knns 9999999 makes the model perform kNN search at every step (FoSS = 0 in Figure 3 of the paper), and achieves the best results at the cost of slower speed.

To run the baseline kNN-LM, add the flag --no-pointer.

Law-MT:

DSTORE=checkpoints/law/dstore16
DSTORE_SIZE=19068709
INDEX=checkpoints/law/knn16.index
MODEL=checkpoints/law/wmt19.en/model.pt

python eval_lm.py data-bin/law \
    --path ${MODEL} \
    --sample-break-mode eos --max-tokens 2048 \
    --context-window 0 --softmax-batch 1024000 --batch-size 2 \
    --gen-subset valid --dstore-filename ${DSTORE} \
    --indexfile ${INDEX}  \
    --model-overrides "{'knn_keytype': 'last_ffn_input'}" \
    --k 1024 --lmbda 0.9 --dstore-size ${DSTORE_SIZE} --knn-keytype last_ffn_input \
    --probe 32 --knnlm --dstore-fp16 \
    --knn-sim-func do_not_recomp_l2 --no-load-keys --move-dstore-to-mem \
    --remove-bpe \
    --knnlm-gpu --min-knns 1 --max-knns 1024

Notice that the difference betweens between the datasets is that in Law-MT we use the flags --remove-bpe and --sample-break-mode eos, and also the --max-tokens and --context-window values are different. Further, as found by He et al., 2021, the interpolation coefficient should be set to --lmbda 0.9, to give more weight to the datastore than the base LM.

Step 7: Adding clustering

For the Greedy Merge clustering algorithm. See the code of He et al. (2021). Greedy Merge is much faster and requires much fewer memory than k-means, but results in slightly higher perplexity:

See also Figures 8 and 9 in Appendix D in the paper.

To download our clusters for Wikitext-103:

Note that only one of the following files is needed. For the main experiments in the paper, we used:

wget -P checkpoints/wt103/ https://retomaton.s3.us-east-2.amazonaws.com/wt103/clusters_s40000000_k1000000_members.pkl

but additional clusterings are available as well:

wget -P checkpoints/wt103/ https://retomaton.s3.us-east-2.amazonaws.com/wt103/clusters_s20000000_k500000_members.pkl
wget -P checkpoints/wt103/ https://retomaton.s3.us-east-2.amazonaws.com/wt103/dstore_merge15_members_sp.pkl
wget -P checkpoints/wt103/ https://retomaton.s3.us-east-2.amazonaws.com/wt103/dstore_merge29_members.pkl

To download our clusters for Law-MT:

Note that only one of the following files is needed. For the main experiments in the paper, we used:

wget -P checkpoints/law/ https://retomaton.s3.us-east-2.amazonaws.com/law/law_clusters_s40000000_k200000_members.pkl

but additional clustering is available as well:

wget -P checkpoints/law/ https://retomaton.s3.us-east-2.amazonaws.com/law/law_clusters_s40000000_k400000_members.pkl

Evaluating RetoMaton with clustering:

Basically identical to Step 6: Evaluating RetoMaton without clustering, except that we add the flag --members <filename>_members.pkl,

Wikitext-103:
DSTORE=checkpoints/wt103/dstore16
DSTORE_SIZE=103225485
INDEX=checkpoints/wt103/knn16.index
MODEL=checkpoints/wt103/wt103_checkpoint_best.pt
MEMBERS=checkpoints/wt103/clusters_s40000000_k1000000_members.pkl

python eval_lm.py data-bin/wikitext-103 \
    --path ${MODEL} \
    --sample-break-mode complete --max-tokens 3072 \
    --context-window 2560 --softmax-batch 1024000 --batch-size 2 \
    --gen-subset valid --dstore-filename ${DSTORE} \
    --indexfile ${INDEX}  \
    --model-overrides "{'knn_keytype': 'last_ffn_input'}" \
    --k 1024 --lmbda 0.25 --dstore-size ${DSTORE_SIZE} --knn-keytype last_ffn_input \
    --probe 32 --knnlm --dstore-fp16 \
    --knn-sim-func do_not_recomp_l2 --no-load-keys --move-dstore-to-mem \
    --knnlm-gpu --min-knns 1 --max-knns 1024 \
    --members ${MEMBERS}
Law-MT:
DSTORE=checkpoints/law/dstore16
DSTORE_SIZE=19068709
INDEX=checkpoints/law/knn16.index
MODEL=checkpoints/law/wmt19.en/model.pt
MEMBERS=checkpoints/law/law_clusters_s40000000_k200000_members.pkl

python eval_lm.py data-bin/law \
    --path ${MODEL} \
    --sample-break-mode eos --max-tokens 2048 \
    --context-window 0 --softmax-batch 1024000 --batch-size 2 \
    --gen-subset valid --dstore-filename ${DSTORE} \
    --indexfile ${INDEX}  \
    --model-overrides "{'knn_keytype': 'last_ffn_input'}" \
    --k 1024 --lmbda 0.9 --dstore-size ${DSTORE_SIZE} --knn-keytype last_ffn_input \
    --probe 32 --knnlm --dstore-fp16 \
    --knn-sim-func do_not_recomp_l2 --no-load-keys --move-dstore-to-mem \
    --remove-bpe \
    --knnlm-gpu --min-knns 1 --max-knns 1024\
    --members ${MEMBERS}

Cluster the keys yourself (not needed if you downloaded our clusters):

for Wikitext-103:

DSTORE=checkpoints/wt103/dstore16
DSTORE_SIZE=103225485
NUM_CLUSTERS=1000000
SAMPLE=40000000
DIM=1024
SAVE=kmeans_wt103

For Law-MT:

DSTORE=checkpoints/law/dstore16
DSTORE_SIZE=19068709
NUM_CLUSTERS=200000
SAMPLE=40000000
DIM=1536
SAVE=kmeans_law

And then for both datasets:

python kmeans.py --dstore ${DSTORE} --dstore-size ${DSTORE_SIZE} --num-clusters ${NUM_CLUSTERS} --sample ${SAMPLE} --dim ${DIM} --save ${}

Step 8: Evaluating the Fine-tuned Model

The model that was fine-tuned on Law-MT, along with its corresponding datastore, FAISS index and clustering can be downloaded from:

mkdir checkpoints/law-finetuned/
wget -P checkpoints/law-finetuned/ https://retomaton.s3.us-east-2.amazonaws.com/law/finetuned.pt
wget -P checkpoints/law-finetuned/ https://retomaton.s3.us-east-2.amazonaws.com/law/dstore16_finetuned_size19068709_embed1536_fp16_vals.npy
wget -P checkpoints/law-finetuned/ https://retomaton.s3.us-east-2.amazonaws.com/law/dstore16_finetuned_size19068709_embed1536_fp16_keys.npy
wget -P checkpoints/law-finetuned/ https://retomaton.s3.us-east-2.amazonaws.com/law/knn_finetuned.index
wget -P checkpoints/law-finetuned/ https://retomaton.s3.us-east-2.amazonaws.com/law/law_finetuned_clusters_s20000000_k200000_members.pkl

Finally, evaluate using the fine-tuned checkpoint, datastore, and index.

It is important to also set --lmbda 0.25 when using the fine-tuned model: since the model is fine-tuned, we can rely on it more than before. See a clarification at #lambda-values

Best results with the fine-tuned model are achieved without clustering (that is, every datastore entry is a singleton cluster).

Then, the same steps as before should be run on the Law-MT datasets, except that:

  • finetuned.pt should be used as the ${MODEL}
  • dstore16_finetuned_size19068709_embed1536_fp16 should be used as the ${DSTORE}
  • knn_finetuned.index should be used as the ${INDEX}
  • law_finetuned_clusters_s20000000_k200000_members.pkl shoould be used as${MEMBERS}

That is:

DSTORE=checkpoints/law-finetuned/dstore16_finetuned_size19068709_embed1536_fp16
DSTORE_SIZE=19068709
INDEX=checkpoints/law-finetuned/knn_finetuned.index
MODEL=checkpoints/law-finetuned/finetuned.pt
MEMBERS=checkpoints/law-finetuned/law_finetuned_clusters_s20000000_k200000_members.pkl

python eval_lm.py data-bin/law \
    --path ${MODEL} \
    --sample-break-mode eos --max-tokens 2048 \
    --context-window 0 --softmax-batch 1024000 --batch-size 2 \
    --gen-subset valid --dstore-filename ${DSTORE} \
    --indexfile ${INDEX}  \
    --model-overrides "{'knn_keytype': 'last_ffn_input'}" \
    --k 1024 --lmbda 0.25 --dstore-size ${DSTORE_SIZE} --knn-keytype last_ffn_input \
    --probe 32 --knnlm --dstore-fp16 \
    --knn-sim-func do_not_recomp_l2 --no-load-keys --move-dstore-to-mem \
    --remove-bpe \
    --knnlm-gpu --min-knns 1 --max-knns 1024

Lambda values

In all configurations, the interpolation factor lmbda is set to 0.25, except when the base LM is checkpoints/law/wmt19.en/model.pt and the model is evaluated on Law-MT, since this scenario tests domain adaptation, and thus lmbda should be set to 0.9:

wt103_checkpoint_best.pt wmt19.en/model.pt finetuned.pt
Wikitext-103 0.25 - -
Law-MT - 0.9 0.25

All files:

Checkpoints and datasets can be downloaded from here: https://zenodo.org/record/6525426

And also from the AWS S3 bucket

Differences from the kNN-LM implementation

Implementation Pointers

Here we point to the code that differs our work from kNN-LM.

Additional minor differences:

  • The original kNN-LM repository uses faiss CPU to perform retrieval. However, we added the flag --knnlm-gpu that allows performing retrieval much faster on the GPU.
  • After each retrieval, the original kNN-LM repository loads the found keys and re-computes the distance from the query to each nearest neighbor. This is much more time consuming, unless loading all the keys (200GB) into memory. We thus use the flags --knn-sim-func do_not_recomp_l2 --no-load-keys --move-dstore-to-mem.
  • When using faiss-gpu, it is useful to import faiss.contrib.torch_utils. This allows performing the kNN search using torch tensors (rather than only numpy arrays). Additionally, sometimes this import statement prevents searching bugs in faiss (see this issue).

Citation

Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval

@inproceedings{alon2022neuro,
  title={Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval},
  author={Alon, Uri and Xu, Frank and He, Junxian and Sengupta, Sudipta and Roth, Dan and Neubig, Graham},
  booktitle={International Conference on Machine Learning},
  pages={468--485},
  year={2022},
  organization={PMLR}
}

About

PyTorch code for the RetoMaton paper: "Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval" (ICML 2022)

Topics

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages