-
Notifications
You must be signed in to change notification settings - Fork 127
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[NeoMLTest] Add SpaceToDepth tests (#1113)
Signed-off-by: Kirill Golikov <kirill.golikov@abbyy.com>
- Loading branch information
Showing
4 changed files
with
278 additions
and
43 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
/* Copyright © 2024 ABBYY | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
--------------------------------------------------------------------------------------------------------------*/ | ||
|
||
#pragma once | ||
#include <common.h> | ||
|
||
namespace NeoMLTest { | ||
|
||
class CDnnSimpleTestDummyLearningLayer : public CBaseLayer { | ||
NEOML_DNN_LAYER( CDnnSimpleTestDummyLearningLayer ) | ||
public: | ||
CPtr<CDnnBlob> ExpectedDiff; | ||
CPtr<CDnnBlob> ActualDiff; | ||
|
||
explicit CDnnSimpleTestDummyLearningLayer( IMathEngine& mathEngine ) : | ||
CBaseLayer( mathEngine, "CDnnSimpleTestDummyLearningLayer", true ) {} | ||
void Serialize( CArchive& archive ) override; | ||
|
||
protected: | ||
void Reshape() override; | ||
void RunOnce() override { outputBlobs[0]->CopyFrom( inputBlobs[0] ); }; | ||
void BackwardOnce() override; | ||
void LearnOnce() override; | ||
}; | ||
|
||
//--------------------------------------------------------------------------------------------------------------------- | ||
|
||
class CDnnSimpleTestDummyLossLayer : public CLossLayer { | ||
NEOML_DNN_LAYER( CDnnSimpleTestDummyLossLayer ) | ||
public: | ||
CPtr<CDnnBlob> Diff; | ||
|
||
explicit CDnnSimpleTestDummyLossLayer( IMathEngine& mathEngine ) : | ||
CLossLayer( mathEngine, "CDnnSimpleTestDummyLossLayer" ) {} | ||
void Serialize( CArchive& archive ) override; | ||
|
||
protected: | ||
void BatchCalculateLossAndGradient( int batchSize, CConstFloatHandle, int vectorSize, | ||
CConstIntHandle, int, CFloatHandle lossValue, CFloatHandle lossGradient ) override; | ||
|
||
void BatchCalculateLossAndGradient( int batchSize, CConstFloatHandle data, int vectorSize, | ||
CConstFloatHandle label, int labelSize, CFloatHandle lossValue, CFloatHandle lossGradient ) override | ||
{ BatchCalculateLossAndGradient( batchSize, data, vectorSize, label, labelSize, lossValue, lossGradient, CFloatHandle{} ); } | ||
|
||
void BatchCalculateLossAndGradient( int batchSize, CConstFloatHandle data, int vectorSize, | ||
CConstFloatHandle label, int labelSize, CFloatHandle lossValue, CFloatHandle lossGradient, | ||
CFloatHandle labelLossGradient ) override; | ||
}; | ||
|
||
} // namespace NeoMLTest |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,214 @@ | ||
/* Copyright © 2024 ABBYY | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
--------------------------------------------------------------------------------------------------------------*/ | ||
|
||
#include <common.h> | ||
#pragma hdrstop | ||
|
||
#include <TestFixture.h> | ||
#include <DnnSimpleTest.h> | ||
|
||
using namespace NeoML; | ||
using namespace NeoMLTest; | ||
|
||
namespace NeoMLTest { | ||
|
||
template<class T> | ||
static void SpaceToDepthNaive( const CDnnBlob& source, const T* sourceData, int blockSize, | ||
const CDnnBlob& result, T* resultData ) | ||
{ | ||
const int batchSize = source.GetObjectCount(); | ||
const int sourceHeight = source.GetHeight(); | ||
const int sourceWidth = source.GetWidth(); | ||
const int sourceChannels = source.GetChannelsCount(); | ||
for( int batch = 0; batch < batchSize; ++batch ) { | ||
for( int row = 0; row < sourceHeight; ++row ) { | ||
const int blockY = row / blockSize; | ||
const int inBlockY = row % blockSize; | ||
for( int col = 0; col < sourceWidth; ++col ) { | ||
const int blockX = col / blockSize; | ||
const int inBlockX = col % blockSize; | ||
for( int ch = 0; ch < sourceChannels; ++ch ) { | ||
const int resultCh = ( inBlockY * blockSize + inBlockX ) * sourceChannels + ch; | ||
resultData[GetFlatIndex( result, 0, batch, 0, resultCh, 0, blockY, blockX )] | ||
= sourceData[GetFlatIndex( source, 0, batch, 0, ch, 0, row, col )]; | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
static void spaceToDepthTestFloat( const CTestParams& params, int seed ) | ||
{ | ||
CRandom random( seed ); | ||
|
||
const CInterval batchSizeInterval = params.GetInterval( "BatchSize" ); | ||
const CInterval blockSizeIntrval = params.GetInterval( "BlockSize" ); | ||
const CInterval inputChannelsInterval = params.GetInterval( "InputChannels" ); | ||
const CInterval outputHeightInterval = params.GetInterval( "OutputHeight" ); | ||
const CInterval outputWidthInterval = params.GetInterval( "OutputWidth" ); | ||
const CInterval valuesInterval = params.GetInterval( "Values" ); | ||
|
||
const int batchSize = random.UniformInt( batchSizeInterval.Begin, batchSizeInterval.End ); | ||
const int outputHeight = random.UniformInt( outputHeightInterval.Begin, outputHeightInterval.End ); | ||
const int outputWidth = random.UniformInt( outputWidthInterval.Begin, outputWidthInterval.End ); | ||
const int inputChannels = random.UniformInt( inputChannelsInterval.Begin, inputChannelsInterval.End ); | ||
const int blockSize = random.UniformInt( blockSizeIntrval.Begin, blockSizeIntrval.End ); | ||
const int inputHeight = outputHeight * blockSize; | ||
const int inputWidth = outputWidth * blockSize; | ||
const int outputChannels = inputChannels * blockSize * blockSize; | ||
|
||
CPtr<CDnnBlob> original = CDnnBlob::Create2DImageBlob( MathEngine(), CT_Float, 1, | ||
batchSize, inputHeight, inputWidth, inputChannels ); | ||
const int dataSize = original->GetDataSize(); | ||
CREATE_FILL_FLOAT_ARRAY( originalData, valuesInterval.Begin, valuesInterval.End, dataSize, random ); | ||
original->CopyFrom( originalData.GetPtr() ); | ||
|
||
CPtr<CDnnBlob> converted = CDnnBlob::Create2DImageBlob( MathEngine(), CT_Float, 1, | ||
batchSize, outputHeight, outputWidth, outputChannels ); | ||
CArray<float> convertedData; | ||
convertedData.SetSize( dataSize ); | ||
SpaceToDepthNaive( *original, originalData.GetPtr(), blockSize, *converted, convertedData.GetPtr() ); | ||
converted->CopyFrom( convertedData.GetPtr() ); | ||
|
||
{ | ||
CDnn s2dnn( random, MathEngine() ); | ||
CPtr<CSourceLayer> data = Source( s2dnn, "data" ); | ||
CPtr<CDnnSimpleTestDummyLearningLayer> learn = AddLayer<CDnnSimpleTestDummyLearningLayer>( "learn", { data } ); | ||
CPtr<CSpaceToDepthLayer> s2d = SpaceToDepth( blockSize )( learn.Ptr() ); | ||
CPtr<CSourceLayer> label = Source( s2dnn, "label" ); | ||
CPtr<CDnnSimpleTestDummyLossLayer> loss = AddLayer<CDnnSimpleTestDummyLossLayer>( "loss", { s2d, label } ); | ||
|
||
data->SetBlob( original ); | ||
learn->ExpectedDiff = original->GetCopy(); | ||
label->SetBlob( converted ); | ||
loss->Diff = converted->GetCopy(); | ||
|
||
s2dnn.RunAndLearnOnce(); | ||
} | ||
|
||
{ | ||
CDnn d2snn( random, MathEngine() ); | ||
CPtr<CSourceLayer> data = Source( d2snn, "data" ); | ||
CPtr<CDnnSimpleTestDummyLearningLayer> learn = AddLayer<CDnnSimpleTestDummyLearningLayer>( "learn", { data } ); | ||
CPtr<CDepthToSpaceLayer> d2s = DepthToSpace( blockSize )( learn.Ptr() ); | ||
CPtr<CSourceLayer> label = Source( d2snn, "label" ); | ||
CPtr<CDnnSimpleTestDummyLossLayer> loss = AddLayer<CDnnSimpleTestDummyLossLayer>( "loss", { d2s, label } ); | ||
|
||
data->SetBlob( converted ); | ||
learn->ExpectedDiff = converted->GetCopy(); | ||
label->SetBlob( original ); | ||
loss->Diff = original->GetCopy(); | ||
|
||
d2snn.RunAndLearnOnce(); | ||
} | ||
} | ||
|
||
static void spaceToDepthTestInt( const CTestParams& params, int seed ) | ||
{ | ||
CRandom random( seed ); | ||
|
||
const CInterval batchSizeInterval = params.GetInterval( "BatchSize" ); | ||
const CInterval blockSizeIntrval = params.GetInterval( "BlockSize" ); | ||
const CInterval inputChannelsInterval = params.GetInterval( "InputChannels" ); | ||
const CInterval outputHeightInterval = params.GetInterval( "OutputHeight" ); | ||
const CInterval outputWidthInterval = params.GetInterval( "OutputWidth" ); | ||
const CInterval valuesInterval = params.GetInterval( "Values" ); | ||
|
||
const int batchSize = random.UniformInt( batchSizeInterval.Begin, batchSizeInterval.End ); | ||
const int outputHeight = random.UniformInt( outputHeightInterval.Begin, outputHeightInterval.End ); | ||
const int outputWidth = random.UniformInt( outputWidthInterval.Begin, outputWidthInterval.End ); | ||
const int inputChannels = random.UniformInt( inputChannelsInterval.Begin, inputChannelsInterval.End ); | ||
const int blockSize = random.UniformInt( blockSizeIntrval.Begin, blockSizeIntrval.End ); | ||
const int inputHeight = outputHeight * blockSize; | ||
const int inputWidth = outputWidth * blockSize; | ||
const int outputChannels = inputChannels * blockSize * blockSize; | ||
|
||
CPtr<CDnnBlob> original = CDnnBlob::Create2DImageBlob( MathEngine(), CT_Int, 1, | ||
batchSize, inputHeight, inputWidth, inputChannels ); | ||
const int dataSize = original->GetDataSize(); | ||
CREATE_FILL_INT_ARRAY( originalData, valuesInterval.Begin, valuesInterval.End, dataSize, random ); | ||
original->CopyFrom( originalData.GetPtr() ); | ||
|
||
CPtr<CDnnBlob> converted = CDnnBlob::Create2DImageBlob( MathEngine(), CT_Int, 1, | ||
batchSize, outputHeight, outputWidth, outputChannels ); | ||
CArray<int> convertedData; | ||
convertedData.SetSize( dataSize ); | ||
SpaceToDepthNaive( *original, originalData.GetPtr(), blockSize, *converted, convertedData.GetPtr() ); | ||
converted->CopyFrom( convertedData.GetPtr() ); | ||
|
||
{ | ||
CDnn s2dnn( random, MathEngine() ); | ||
CPtr<CSourceLayer> data = Source( s2dnn, "data" ); | ||
CPtr<CSpaceToDepthLayer> s2d = SpaceToDepth( blockSize )( data.Ptr() ); | ||
CPtr<CSinkLayer> sink = Sink( s2d.Ptr(), "sink" ); | ||
|
||
data->SetBlob( original ); | ||
s2dnn.RunOnce(); | ||
|
||
CPtr<CDnnBlob> result = sink->GetBlob(); | ||
int* buffer = result->GetBuffer<int>( 0, dataSize, /*exchange*/false ); | ||
for( int i = 0; i < dataSize; ++i ) { | ||
EXPECT_EQ( convertedData[i], buffer[i] ) << i; | ||
} | ||
result->ReleaseBuffer( buffer, false ); | ||
} | ||
|
||
{ | ||
CDnn d2snn( random, MathEngine() ); | ||
CPtr<CSourceLayer> data = Source( d2snn, "data" ); | ||
CPtr<CDepthToSpaceLayer> d2s = DepthToSpace( blockSize )( data.Ptr() ); | ||
CPtr<CSinkLayer> sink = Sink( d2s.Ptr(), "sink" ); | ||
|
||
data->SetBlob( converted ); | ||
d2snn.RunOnce(); | ||
|
||
CPtr<CDnnBlob> result = sink->GetBlob(); | ||
int* buffer = result->GetBuffer<int>( 0, dataSize, /*exchange*/false ); | ||
for( int i = 0; i < dataSize; ++i ) { | ||
EXPECT_EQ( originalData[i], buffer[i] ) << i; | ||
} | ||
result->ReleaseBuffer( buffer, false ); | ||
} | ||
} | ||
|
||
class CSpaceToDepthTest : public CNeoMlTestFixtureWithParams { | ||
public: | ||
static bool InitTestFixture() { return true; } | ||
static void DeinitTestFixture() {} | ||
}; | ||
|
||
} // namespace NeoMLTest | ||
|
||
//--------------------------------------------------------------------------------------------------------------------- | ||
|
||
INSTANTIATE_TEST_CASE_P( CSpaceToDepthTestInstantiation, CSpaceToDepthTest, | ||
::testing::Values( | ||
CTestParams( | ||
"BatchSize = (1..5);" | ||
"BlockSize = (2..5);" | ||
"InputChannels = (1..10);" | ||
"OutputHeight = (1..10);" | ||
"OutputWidth = (1..10);" | ||
"Values = (-25..25);" | ||
"TestCount = 1000;" | ||
) | ||
) | ||
); | ||
|
||
TEST_P( CSpaceToDepthTest, Run ) | ||
{ | ||
RUN_TEST_IMPL(spaceToDepthTestFloat) | ||
RUN_TEST_IMPL(spaceToDepthTestInt) | ||
} |