Skip to content
/ Kaprekar Public

Kaprekar constant, or 6174, is a constant that arises when we take a 4-digit integer, form the largest and smallest numbers from its digits, and then subtract these two numbers. Continuing with this process of forming and subtracting, we will always arrive at the number 6174.

Notifications You must be signed in to change notification settings

nashv/Kaprekar

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 

Repository files navigation

This script runs through all 3 and 4 digit numbers to reach the Kaprekar constant as described below.

The 3-digit Kaprekar constant is 495. The 4-digit Kaprekar constant is 6174.

The number 6174 is known as Kaprekar's constant after the Indian mathematician D. R. Kaprekar. This number is renowned for the following rule:

  1. Take any four-digit number, where all digits are not the same (eg: not something like 4444).
  2. Arrange the digits in descending and then in ascending order to get two four-digit numbers, adding leading zeros if necessary.
  3. Subtract the smaller number from the bigger number.
  4. Go back to step 2 and repeat.

The above process, known as Kaprekar's routine, will always reach its fixed point, 6174, in at most 7 iterations.[4] Once 6174 is reached, the process will continue yielding 7641 – 1467 = 6174. For example, choose 1459:

9541 – 1459 = 8082 8820 – 0288 = 8532 8532 – 2358 = 6174 7641 – 1467 = 6174

The only four-digit numbers for which Kaprekar's routine does not reach 6174 are repdigits such as 1111, which give the result 0000 after a single iteration. All other four-digit numbers eventually reach 6174 if leading zeros are used to keep the number of digits at 4. For numbers with three identical digits and a fourth digit that is one higher or lower (such as 2111), it is essential to treat 3-digit numbers with a leading zero; for example: 2111 – 1112 = 0999; 9990 – 999 = 8991; 9981 – 1899 = 8082; 8820 – 288 = 8532; 8532 – 2358 = 6174.

About

Kaprekar constant, or 6174, is a constant that arises when we take a 4-digit integer, form the largest and smallest numbers from its digits, and then subtract these two numbers. Continuing with this process of forming and subtracting, we will always arrive at the number 6174.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages