Skip to content

myrinx/SPL_UD_DL

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep Learning for Dermatologist-Level Detection of Ugly-Duckling (UD) and Suspicious Pigmented Skin Lesions (SPL) from Wide-Field Images

Code to reproduce Soenksen, LR. et al 2020, on Science Translational Medicine

Image description

CODE STRUCTURE (NOTEBOOKS / INPUTS / OUTPUTS)

Samples of data Preparation, model training, testing and integrated analysis system according to the methods of Soenksen, LR. et al 2020, can be executed through the included Jupyter notebooks in the following order:

  • 00_A_DL_Image_Patch_generation.ipynb
  • 00_B_DL_Image_Database_CLAHE_PreProcessing.ipynb
  • 00_C_DL_Image_Database_Randomization.ipynb
  • 00_D_DL_Image_Augmentation_of_Randomized_CLAHE_Database.ipynb
  • 01_DL_SPL_Detection_Basic_Model_Creator.ipynb
  • 02_DL_SPL_Detection_Augmented_Model_Creator.ipynb
  • 03_DL_SPL_Detection_Augmented_TL_VGG16_Bottleneck_Model_Creator.ipynb
  • 03_DL_SPL_Detection_Augmented_TL_VGG16_Fine_Tuning_Model_Creator.ipynb
  • 04_DL_SPL_Detection_Augmented_TL_XCEPTION_Bottleneck_Model_Creator.ipynb
  • 04_DL_SPL_Detection_Augmented_TL_XCEPTION_Fine_Tuning_Model_Creator.ipynb
  • 05_DL_SPL_A_Wide_Field_Feature_Extractor_UglyDucking_Ranking_and_T-SNE.ipynb

PROBLEM/SOLUTION DEFINITION

Wide-field imaging and deep neural networks are used to facilitate the accurate detection of suspicious and salient pigmented lesions to allow for convenient skin screenings at the primary care level.

MODELS (Direct Download)

Due to egress limits on GIT, this repo requires that you download the following "Outputs" folder, which includes the trained Deep Convolutional Neural Network (DCNN) model weight files directly from this link: https://www.dropbox.com/s/n0aj1ezzh99uyjd/Models.zip?dl=0. After download place in the main project folder and unzip.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 93.8%
  • Jupyter Notebook 6.2%