Adv Training of ViTs @ NeurIPS 2022 "When Adversarial Training Meets Vision Transformers: Recipes from Training to Architecture" by Yichuan Mo, Dongxian Wu, Yifei Wang, Yiwen Guo, Yisen Wang.
Run pip install -r requirement.txt
to install all requrements!
# AT
CUDA_VISIBLE_DEVICES=0 python train_cifar.py --model "deit_tiny_patch16_224" --out-dir "./pgd_vanilla" --method 'AT' --seed 0
# TRADES
CUDA_VISIBLE_DEVICES=1 python train_cifar.py --model "deit_tiny_patch16_224" --out-dir "./trades_vanilla" --method 'TRADES' --seed 0
# MART
CUDA_VISIBLE_DEVICES=2 python train_cifar.py --model "deit_tiny_patch16_224" --out-dir "./mart_vanilla" --method 'MART' --seed 0
You can use --model
to select other ViT variants to train.
CUDA_VISIBLE_DEVICES=0 python train_cifar.py --model "deit_tiny_patch16_224" --n_w 10 --out-dir "./pgd_architecture" --method 'AT' --seed 0 --ARD --PRM
You can use --method
to select other defense methods!
First, you need to download the ImageNette-v1 dataset (the old version of ImageNette) to the local path ./data
from here.
# AT
CUDA_VISIBLE_DEVICES=0 python train_imagenette.py --model "deit_tiny_patch16_224" --out-dir "./pgd_vanilla" --method 'AT' --seed 0
# TRADES
CUDA_VISIBLE_DEVICES=1 python train_imagenette.py --model "deit_tiny_patch16_224" --out-dir "./trades_vanilla" --method 'TRADES' --seed 0
# MART
CUDA_VISIBLE_DEVICES=2 python train_imagenette.py --model "deit_tiny_patch16_224" --out-dir "./mart_vanilla" --method 'MART' --seed 0
You can use --model
to select other ViT variants to train.
CUDA_VISIBLE_DEVICES=0 python train_imagenette.py --model "deit_tiny_patch16_224" --n_w 10 --out-dir "./pgd_architecture" --method 'AT' --seed 0 --ARD --PRM
You can use --method
to select other defense methods!
python train_imagenet.py --model "swin_base_patch4_window7_224_in22k" --out-dir "./pgd_vanilla" --seed 0
You can use --model
to select other ViT variants to train.
python train_imagenet.py --model "swin_base_patch4_window7_224_in22k" --n_w 2 --out-dir "./pgd_architecture" --seed 0 --ARD --PRM
Using our open-source code, we re-ran the experiment on ImageNet-1k on A100 GPUs. You can download the checkpoint directly from the following link: ViT-B (checkpoint, AA), Swin-B (checkpoint, AA). The pretrained models are also available on Robustbench.
This repository is built upon the following four repositories:
https://github.com/yaodongyu/TRADES
https://github.com/YisenWang/MART
https://github.com/rwightman/pytorch-image-models
https://github.com/RulinShao/on-the-adversarial-robustness-of-visual-transformer.
If you find our code is useful, please cite our accompanying paper!
@inproceedings{moadversarial,
title={When Adversarial Training Meets Vision Transformers: Recipes from Training to Architecture},
author={Mo, Yichuan and Wu, Dongxian and Wang, Yifei and Guo, Yiwen and Wang, Yisen},
booktitle={NeurIPS}
year={2022}
}