forked from kevinyamauchi/ngff
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add a file showing how anndata could be stored
- Loading branch information
Showing
1 changed file
with
143 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
import numpy as np | ||
import pandas as pd | ||
import anndata as ad | ||
import zarr | ||
import numcodecs | ||
from scipy.sparse import csr_matrix, csc_matrix | ||
|
||
def generate_example(n_obs, n_var): | ||
# X and layers | ||
adata = ad.AnnData(csr_matrix(np.random.poisson(1, size=(n_obs, n_var)), dtype=np.float32)) | ||
adata.layers["log_transformed"] = np.log1p(adata.X) | ||
adata.layers["other_data"] = np.random.poisson(1, size=(n_obs, n_var)) + 1.0 | ||
|
||
# obs and var names | ||
adata.obs_names = [f"Cell_{i:d}" for i in range(adata.n_obs)] | ||
adata.var_names = [f"Gene_{i:d}" for i in range(adata.n_vars)] | ||
|
||
# annotations | ||
# the tutorial mentions that string arrays are automatically converted to categoricals if convenient | ||
adata.obs["cell_type"] = pd.Categorical(np.random.choice(["B", "T", "Monocyte"], size=(adata.n_obs,))) | ||
adata.obsm["X_umap"] = np.random.normal(0, 1, size=(adata.n_obs, 2)) | ||
adata.varm["gene_stuff"] = np.random.normal(0, 1, size=(adata.n_vars, 5)) | ||
adata.obsp["pairwise_data"] = csc_matrix(np.random.poisson(1, size=(n_obs, n_obs)), dtype=np.int32) | ||
|
||
# uns | ||
adata.uns["random"] = [1, 2, 3] | ||
|
||
return adata | ||
|
||
|
||
def write_anndata(adata, filename, chunks): | ||
# root and tables | ||
root = zarr.open(filename, mode="w") | ||
root.array("some_image", np.array([0]), chunks=(1,)) | ||
tables = root.create_group("tables") | ||
adgroup = tables.create_group("anndata") | ||
adgroup.attrs["anndata"] = "0.9.1" | ||
adgroup.attrs["other-metadata"] = "metadata describing how the anndata annotates some_image" | ||
|
||
# X/layers | ||
X = adgroup.array('X', adata.X.todense(), chunks=chunks) | ||
layers = adgroup.create_group("layers") | ||
layers.array("log_transformed", adata.layers["log_transformed"].todense(), chunks=chunks) | ||
layers.array("other_data", adata.layers["other_data"], chunks=chunks) | ||
|
||
# obs | ||
localChunks = (chunks[0],) | ||
obs = adgroup.create_group("obs") | ||
obs.create_dataset("row_names", data=np.array(adata.obs_names), dtype=object, object_codec=numcodecs.VLenUTF8()) | ||
obs.create_dataset("cell_type", data=np.array(adata.obs["cell_type"]), chunks=localChunks, object_codec=numcodecs.VLenUTF8()) | ||
obs.attrs["annotated-data"] = get_annotated_data_map(dimension=0) | ||
obs.attrs["column-order"] = ["row_names", "cell_type"] | ||
|
||
# obsm | ||
obsm = adgroup.create_group("obsm") | ||
obsm.create_dataset("X_umap", data=adata.obsm["X_umap"], chunks=(chunks[0], 2)) | ||
obsm.attrs["annotated-data"] = get_annotated_data_map(dimension=0) | ||
obsm.attrs["column-order"] = ["X_umap"] | ||
|
||
# obsp | ||
obsp = adgroup.create_group("obsp") | ||
obsp.create_dataset("pairwise_data", data=adata.obsp["pairwise_data"].todense(), chunks=(chunks[0], chunks[0])) | ||
obsp.attrs["annotated-data"] = get_annotated_data_map(dimension=0) | ||
obsp.attrs["column-order"] = ["pairwise_data"] | ||
|
||
# var | ||
var = adgroup.create_group("var") | ||
var.create_dataset("row_names", data=np.array(adata.var_names), chunks=(chunks[1],), object_codec=numcodecs.VLenUTF8()) | ||
var.attrs["annotated-data"] = get_annotated_data_map(dimension=1) | ||
var.attrs["column-order"] = ["row_names"] | ||
|
||
# varm | ||
varm = adgroup.create_group("varm") | ||
varm.create_dataset("gene_stuff", data=adata.varm["gene_stuff"], chunks=(chunks[1], 5)) | ||
varm.attrs["annotated-data"] = get_annotated_data_map(dimension=1) | ||
varm.attrs["column-order"] = ["gene_stuff"] | ||
|
||
# varm | ||
varp = adgroup.create_group("varp") | ||
varp.attrs["annotated-data"] = get_annotated_data_map(dimension=1) | ||
varp.attrs["column-order"] = [] | ||
|
||
# uns | ||
uns = adgroup.create_group("uns") | ||
uns.create_dataset("random", data=adata.uns["random"], chunks=(3,)) | ||
|
||
|
||
def get_annotated_data_map(*, dimension): | ||
return [{"array": "/tables/anndata/X", "dimension": str(dimension)}, | ||
{"array": "/tables/anndata/layers/log_transformed", "dimension": str(dimension)}, | ||
{"array": "/tables/anndata/layers/other_data", "dimension": str(dimension)}] | ||
|
||
|
||
def write_anndata_suggestion(adata, filename, chunks): | ||
# root and tables | ||
root = zarr.open(filename, mode="w") | ||
root.array("some_image", np.array([0]), chunks=(1,)) | ||
tables = root.create_group("tables") | ||
adgroup = tables.create_group("anndata") | ||
adgroup.attrs["anndata"] = "0.9.1" | ||
adgroup.attrs["other-metadata"] = "metadata describing how the anndata annotates some_image" | ||
|
||
# X and layers are combined into one array, a table is used to name the layers | ||
all_together = np.stack([np.array(adata.X.todense()), np.array(adata.layers["log_transformed"].todense()), adata.layers["other_data"]], axis=2) | ||
X = adgroup.array('X', all_together, chunks=(*chunks,1)) | ||
layers = adgroup.create_group("layers") | ||
row_names = np.array(["X", "log_transformed", "other_data"]) | ||
layers.create_dataset("row_names", data=row_names, dtype=object, object_codec=numcodecs.VLenUTF8()) | ||
layers.attrs["annotated-data"] = [{"array": "/tables/anndata/X", "dimension": "2"}] | ||
obs.attrs["column-order"] = ["row_names"] | ||
|
||
# obs (combines obs, obsm, obsp) | ||
localChunks = (chunks[0],) | ||
obs = adgroup.create_group("obs") | ||
obs.create_dataset("row_names", data=np.array(adata.obs_names), dtype=object, object_codec=numcodecs.VLenUTF8()) | ||
obs.create_dataset("cell_type", data=np.array(adata.obs["cell_type"]), chunks=localChunks, object_codec=numcodecs.VLenUTF8()) | ||
obs.create_dataset("X_umap", data=adata.obsm["X_umap"], chunks=(chunks[0], 2)) | ||
obs.create_dataset("pairwise_data", data=adata.obsp["pairwise_data"].todense(), chunks=(chunks[0], chunks[0])) | ||
obs.attrs["annotated-data"] = [{"array": "/tables/anndata/X", "dimension": "0"}] | ||
obs.attrs["column-order"] = ["row_names", "cell_type", "X_umap", "pairwise_data"] | ||
|
||
# var (combines var, varm, varp) | ||
var = adgroup.create_group("var") | ||
var.create_dataset("row_names", data=np.array(adata.var_names), chunks=(chunks[1],), object_codec=numcodecs.VLenUTF8()) | ||
var.create_dataset("gene_stuff", data=adata.varm["gene_stuff"], chunks=(chunks[1], 5)) | ||
var.attrs["annotated-data"] = [{"array": "/tables/anndata/X", "dimension": "1"}] | ||
var.attrs["column-order"] = ["row_names", "gene_stuff"] | ||
|
||
# uns | ||
uns = adgroup.create_group("uns") | ||
uns.create_dataset("random", data=adata.uns["random"], chunks=(3,)) | ||
|
||
|
||
# generate example and store as zarr using the minimal table spec proposal | ||
n_obs = 10 | ||
n_var = 200 | ||
chunks = (10, 40) | ||
|
||
adata = generate_example(n_obs, n_var) | ||
write_anndata(adata, "example.zarr", chunks) | ||
|
||
# store example in an alternative way, exploiting the properties of the suggested minimal table spec a bit more | ||
write_anndata_suggestion(adata, "example_suggestion.zarr", chunks) |