-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #36 from Kostee/main
Kompletne pd2 #17
- Loading branch information
Showing
15 changed files
with
816,017 additions
and
0 deletions.
There are no files selected for viewing
260,531 changes: 260,531 additions & 0 deletions
260,531
PraceDomowe/PracaDomowa2/Kosterna_Jakub/.ipynb_checkpoints/Kosterna_pd2-checkpoint.ipynb
Large diffs are not rendered by default.
Oops, something went wrong.
160 changes: 160 additions & 0 deletions
160
PraceDomowe/PracaDomowa2/Kosterna_Jakub/.ipynb_checkpoints/xgboost_model-checkpoint.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Jakub Kosterna - przygotowanie modelu\n", | ||
"## Warsztaty Badawcze 2021: XAI-1\n", | ||
"### Skrypt dodatkowy do pracy domowej 2" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Co ja tu robię" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Czyż druga praca domowa nie jest wspaniałą okazją, aby jeszcze lepiej poznać **<font color=\"red\">Red Wine Quality</font>**?\n", | ||
"\n", | ||
"Metodę **LIME** będę badał na najlepszym znalezionym przez mój zespół modelu *XGBoost* z tuningiem wybranych hyperparametrów." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Potrzebne pakiety i ziarno generatora" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"import numpy as np\n", | ||
"import pickle\n", | ||
"\n", | ||
"from sklearn.model_selection import train_test_split\n", | ||
"from sklearn import preprocessing\n", | ||
"\n", | ||
"import xgboost as xgb\n", | ||
"\n", | ||
"from sklearn.model_selection import RandomizedSearchCV\n", | ||
"\n", | ||
"np.random.seed = 42" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Przygotowanie zbiorów treningowego i testowego" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"df_wines = pd.read_csv('winequality-red.csv')\n", | ||
"df_wines[\"is_good\"] = df_wines.apply(lambda row: 1 if row.quality > 5 else 0, axis = 1)\n", | ||
"X = df_wines.drop([\"is_good\", 'quality'], axis=1)\n", | ||
"y = df_wines[\"is_good\"]\n", | ||
"X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y,random_state = 42)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Model i tuning hyperparametrów" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"{'min_child_weight': 1,\n", | ||
" 'max_depth': 5,\n", | ||
" 'learning_rate': 0.15,\n", | ||
" 'gamma': 0.4,\n", | ||
" 'colsample_bytree': 0.5}" | ||
] | ||
}, | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"xgb_param_grid = {\n", | ||
" \"learning_rate\": [0.05, 0.10, 0.15, 0.20, 0.25, 0.30] ,\n", | ||
" \"max_depth\": [ 3, 4, 5, 6, 8, 10, 12, 15],\n", | ||
" \"min_child_weight\": [ 1, 3, 5, 7],\n", | ||
" \"gamma\": [ 0.0, 0.1, 0.2 , 0.3, 0.4],\n", | ||
" \"colsample_bytree\": [ 0.3, 0.4, 0.5 , 0.7]\n", | ||
"}\n", | ||
"\n", | ||
"xgb = xgb.XGBClassifier(objective = \"binary:logistic\", eval_metric = \"logloss\", use_label_encoder = False, seed = 42)\n", | ||
"\n", | ||
"randomized_mse = RandomizedSearchCV(param_distributions = xgb_param_grid,\n", | ||
" estimator = xgb,\n", | ||
" cv = 4,\n", | ||
" n_iter = 1000)\n", | ||
"\n", | ||
"randomized_mse.fit(X_train, y_train)\n", | ||
"randomized_mse.best_params_" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Zapis modelu" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"pickle.dump(randomized_mse, open(\"xgb\", 'wb'))" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.0" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |
Oops, something went wrong.