-
Notifications
You must be signed in to change notification settings - Fork 210
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
1,668 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
# Copyright 2024 Huawei Technologies Co., Ltd | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================ | ||
""" | ||
Jamba Model. | ||
""" | ||
from . import configuration_jamba, modeling_jamba | ||
from .configuration_jamba import * | ||
from .modeling_jamba import * | ||
|
||
__all__ = [] | ||
__all__.extend(configuration_jamba.__all__) | ||
__all__.extend(modeling_jamba.__all__) |
210 changes: 210 additions & 0 deletions
210
mindnlp/transformers/models/jamba/configuration_jamba.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,210 @@ | ||
# coding=utf-8 | ||
# Copyright 2024 AI21 Labs Ltd. and the HuggingFace Inc. team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
""" Jamba model configuration""" | ||
import math | ||
|
||
from ...configuration_utils import PretrainedConfig | ||
from ....utils import logging | ||
|
||
|
||
logger = logging.get_logger(__name__) | ||
|
||
|
||
class JambaConfig(PretrainedConfig): | ||
r""" | ||
This is the configuration class to store the configuration of a [`JambaModel`]. It is used to instantiate a | ||
Jamba model according to the specified arguments, defining the model architecture. Instantiating a configuration | ||
with the defaults will yield a similar configuration to that of the jamba-small architecture. | ||
[ai21labs/jamba-small](https://huggingface.co/ai21labs/Jamba-v0.1) | ||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | ||
documentation from [`PretrainedConfig`] for more information. | ||
Args: | ||
vocab_size (`int`, *optional*, defaults to 65536): | ||
Vocabulary size of the Jamba model. Defines the number of different tokens that can be represented by the | ||
`inputs_ids` passed when calling [`JambaModel`] | ||
tie_word_embeddings (`bool`, *optional*, defaults to `False`): | ||
Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the | ||
model has a output word embedding layer. | ||
hidden_size (`int`, *optional*, defaults to 4096): | ||
Dimension of the hidden representations. | ||
intermediate_size (`int`, *optional*, defaults to 14336): | ||
Dimension of the MLP representations. | ||
num_hidden_layers (`int`, *optional*, defaults to 32): | ||
Number of hidden layers in the Transformer encoder. | ||
num_attention_heads (`int`, *optional*, defaults to 32): | ||
Number of attention heads for each attention layer in the Transformer encoder. | ||
num_key_value_heads (`int`, *optional*, defaults to 8): | ||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If | ||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | ||
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | ||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | ||
by meanpooling all the original heads within that group. For more details checkout [this | ||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. | ||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | ||
The non-linear activation function (function or string) in the decoder. | ||
initializer_range (`float`, *optional*, defaults to 0.02): | ||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | ||
rms_norm_eps (`float`, *optional*, defaults to 1e-06): | ||
The epsilon used by the rms normalization layers. | ||
use_cache (`bool`, *optional*, defaults to `True`): | ||
Whether or not the model should return the last key/values attentions (not used by all models). Only | ||
relevant if `config.is_decoder=True`. | ||
calc_logits_for_entire_prompt (`bool`, *optional*, defaults to `False`): | ||
Whether or not to calculate logits for entire prompt during generation. If `False`, only the logits of the | ||
last prompt token will be calculated, which are the only logits needed for generation. For long sequences, | ||
the logits for the entire sequence may use a lot of memory so setting `calc_logits_for_entire_prompt=False` | ||
will reduce memory footprint significantly. | ||
Note: some generation features may not be available if this is set to `False`. | ||
output_router_logits (`bool`, *optional*, defaults to `False`): | ||
Whether or not the router logits should be returned by the model. Enabling this will also | ||
allow the model to output the auxiliary loss. See [here]() for more details | ||
router_aux_loss_coef (`float`, *optional*, defaults to 0.001): | ||
The aux loss factor for the total loss. | ||
pad_token_id (`int`, *optional*, defaults to 0): | ||
The id of the padding token. | ||
bos_token_id (`int`, *optional*, defaults to 1): | ||
The id of the "beginning-of-sequence" token. | ||
eos_token_id (`int`, *optional*, defaults to 2): | ||
The id of the "end-of-sequence" token. | ||
sliding_window (`int`, *optional*): | ||
Sliding window attention window size. If not specified, will default to `None`. | ||
n_ctx (`int`, *optional*, defaults to 262144): | ||
This value doesn't have any real effect. The maximum sequence length that this model is intended to be | ||
used with. It can be used with longer sequences, but performance may degrade. | ||
attention_dropout (`float`, *optional*, defaults to 0.0): | ||
The dropout ratio for the attention probabilities. | ||
num_experts_per_tok (`int`, *optional*, defaults to 2): | ||
The number of experts to root per-token, can be also interpreted as the `top-p` routing | ||
parameter | ||
num_experts (`int`, *optional*, defaults to 16): | ||
Number of experts per Sparse MLP layer. | ||
expert_layer_period (`int`, *optional*, defaults to 2): | ||
Once in this many layers, we will have an expert layer | ||
expert_layer_offset (`int`, *optional*, defaults to 1): | ||
The first layer index that contains an expert mlp layer | ||
attn_layer_period (`int`, *optional*, defaults to 8): | ||
Once in this many layers, we will have a vanilla attention layer | ||
attn_layer_offset (`int`, *optional*, defaults to 4): | ||
The first layer index that contains a vanilla attention mlp layer | ||
use_mamba_kernels (`bool`, *optional*, defaults to `True`): | ||
Flag indicating whether or not to use the fast mamba kernels. These are available only if `mamba-ssm` and | ||
`causal-conv1d` are installed, and the mamba modules are running on a CUDA device. Raises ValueError if | ||
`True` and kernels are not available | ||
mamba_d_state (`int`, *optional*, defaults to 16): | ||
The dimension the mamba state space latents | ||
mamba_d_conv (`int`, *optional*, defaults to 4): | ||
The size of the mamba convolution kernel | ||
mamba_expand (`int`, *optional*, defaults to 2): | ||
Expanding factor (relative to hidden_size) used to determine the mamba intermediate size | ||
mamba_dt_rank (`Union[int,str]`, *optional*, defaults to `"auto"`): | ||
Rank of the the mamba discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)` | ||
mamba_conv_bias (`bool`, *optional*, defaults to `True`): | ||
Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block. | ||
mamba_proj_bias (`bool`, *optional*, defaults to `False`): | ||
Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the mamba mixer block | ||
mamba_inner_layernorms (`bool`, *optional*, defaults to `True`): | ||
Flag indicating whether or not to apply layernorms to internal mamba activations | ||
""" | ||
|
||
model_type = "jamba" | ||
keys_to_ignore_at_inference = ["past_key_values"] | ||
|
||
def __init__( | ||
self, | ||
vocab_size=65536, | ||
tie_word_embeddings=False, | ||
hidden_size=4096, | ||
intermediate_size=14336, | ||
num_hidden_layers=32, | ||
num_attention_heads=32, | ||
num_key_value_heads=8, | ||
hidden_act="silu", | ||
initializer_range=0.02, | ||
rms_norm_eps=1e-6, | ||
use_cache=True, | ||
calc_logits_for_entire_prompt=False, | ||
output_router_logits=False, | ||
router_aux_loss_coef=0.001, | ||
pad_token_id=0, | ||
bos_token_id=1, | ||
eos_token_id=2, | ||
sliding_window=None, | ||
n_ctx=262144, | ||
attention_dropout=0.0, | ||
num_experts_per_tok=2, | ||
num_experts=16, | ||
expert_layer_period=2, | ||
expert_layer_offset=1, | ||
attn_layer_period=8, | ||
attn_layer_offset=4, | ||
use_mamba_kernels=True, | ||
mamba_d_state=16, | ||
mamba_d_conv=4, | ||
mamba_expand=2, | ||
mamba_dt_rank="auto", | ||
mamba_conv_bias=True, | ||
mamba_proj_bias=False, | ||
mamba_inner_layernorms=True, | ||
**kwargs, | ||
): | ||
self.vocab_size = vocab_size | ||
self.tie_word_embeddings = tie_word_embeddings | ||
self.hidden_size = hidden_size | ||
self.intermediate_size = intermediate_size | ||
self.num_hidden_layers = num_hidden_layers | ||
self.num_attention_heads = num_attention_heads | ||
self.sliding_window = sliding_window | ||
self.n_ctx = n_ctx | ||
self.attention_dropout = attention_dropout | ||
|
||
# for backward compatibility | ||
if num_key_value_heads is None: | ||
num_key_value_heads = num_attention_heads | ||
|
||
self.num_key_value_heads = num_key_value_heads | ||
self.hidden_act = hidden_act | ||
self.initializer_range = initializer_range | ||
self.rms_norm_eps = rms_norm_eps | ||
|
||
self.use_cache = use_cache | ||
self.calc_logits_for_entire_prompt = calc_logits_for_entire_prompt | ||
self.output_router_logits = output_router_logits | ||
self.router_aux_loss_coef = router_aux_loss_coef | ||
|
||
self.num_experts_per_tok = num_experts_per_tok | ||
self.num_experts = num_experts | ||
self.expert_layer_period = expert_layer_period | ||
self.expert_layer_offset = expert_layer_offset | ||
self.attn_layer_period = attn_layer_period | ||
self.attn_layer_offset = attn_layer_offset | ||
|
||
self.use_mamba_kernels = use_mamba_kernels | ||
self.mamba_d_state = mamba_d_state | ||
self.mamba_d_conv = mamba_d_conv | ||
self.mamba_expand = mamba_expand | ||
self.mamba_dt_rank = math.ceil(self.hidden_size / 16) if mamba_dt_rank == "auto" else mamba_dt_rank | ||
self.mamba_conv_bias = mamba_conv_bias | ||
self.mamba_proj_bias = mamba_proj_bias | ||
self.mamba_inner_layernorms = mamba_inner_layernorms | ||
|
||
super().__init__( | ||
pad_token_id=pad_token_id, | ||
bos_token_id=bos_token_id, | ||
eos_token_id=eos_token_id, | ||
tie_word_embeddings=tie_word_embeddings, | ||
**kwargs, | ||
) | ||
|
||
__all__ = ['JambaConfig'] |
Oops, something went wrong.