Skip to content

Commit

Permalink
refactor: uniform all model names (#701)
Browse files Browse the repository at this point in the history
  • Loading branch information
XixinYang authored Jul 13, 2023
1 parent d627dc2 commit 85450da
Show file tree
Hide file tree
Showing 92 changed files with 548 additions and 541 deletions.
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -216,7 +216,7 @@ Currently, MindCV supports the model families listed below. More models with pre
* EfficientNet (MBConvNet Family) https://arxiv.org/abs/1905.11946
* EfficientNet V2 - https://arxiv.org/abs/2104.00298
* GhostNet - https://arxiv.org/abs/1911.11907
* GoogleNet - https://arxiv.org/abs/1409.4842
* GoogLeNet - https://arxiv.org/abs/1409.4842
* Inception-V3 - https://arxiv.org/abs/1512.00567
* Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261
* MNASNet - https://arxiv.org/abs/1807.11626
Expand Down
2 changes: 1 addition & 1 deletion README_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -217,7 +217,7 @@ python train.py --model=resnet50 --dataset=cifar10 \
* EfficientNet (MBConvNet Family) https://arxiv.org/abs/1905.11946
* EfficientNet V2 - https://arxiv.org/abs/2104.00298
* GhostNet - https://arxiv.org/abs/1911.11907
* GoogleNet - https://arxiv.org/abs/1409.4842
* GoogLeNet - https://arxiv.org/abs/1409.4842
* Inception-V3 - https://arxiv.org/abs/1512.00567
* Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261
* MNASNet - https://arxiv.org/abs/1807.11626
Expand Down
2 changes: 1 addition & 1 deletion RELEASE.md
Original file line number Diff line number Diff line change
Expand Up @@ -123,7 +123,7 @@
`mindcv.models` now expose `num_classes` and `in_channels` as constructor arguments:

- Add DenseNet models and pre-trained weights
- Add GoogleNet models and pre-trained weights
- Add GoogLeNet models and pre-trained weights
- Add Inception V3 models and pre-trained weights
- Add Inception V4 models and pre-trained weights
- Add MnasNet models and pre-trained weights
Expand Down
196 changes: 100 additions & 96 deletions benchmark_results.md

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion configs/bit/bit_resnet101_ascend.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ hflip: 0.5
crop_pct: 0.875

# model
model: 'BiTresnet101'
model: 'BiT_resnet101'
num_classes: 1000
pretrained: False
ckpt_path: ''
Expand Down
2 changes: 1 addition & 1 deletion configs/bit/bit_resnet50_ascend.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ hflip: 0.5
crop_pct: 0.875

# model
model: 'BiTresnet50'
model: 'BiT_resnet50'
num_classes: 1000
pretrained: False
ckpt_path: ''
Expand Down
2 changes: 1 addition & 1 deletion configs/bit/bit_resnet50x3_ascend.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ crop_pct: 0.875
auto_augment: "randaug-m7-mstd0.5"

# model
model: 'BiTresnet50x3'
model: 'BiT_resnet50x3'
num_classes: 1000
pretrained: False
ckpt_path: ''
Expand Down
6 changes: 3 additions & 3 deletions configs/convnext/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,9 +25,9 @@ Our reproduced model performance on ImageNet-1K is reported as follows.

| Model | Context | Top-1 (%) | Top-5 (%) | Params (M) | Recipe | Download |
|----------------|-----------|-----------|-----------|------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| ConvNeXt_tiny | D910x64-G | 81.91 | 95.79 | 28.59 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convnext/convnext_tiny_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/convnext/convnext_tiny-ae5ff8d7.ckpt) |
| ConvNeXt_small | D910x64-G | 83.40 | 96.36 | 50.22 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convnext/convnext_small_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/convnext/convnext_small-e23008f3.ckpt) |
| ConvNeXt_base | D910x64-G | 83.32 | 96.24 | 88.59 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convnext/convnext_base_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/convnext/convnext_base-ee3544b8.ckpt) |
| convnext_tiny | D910x64-G | 81.91 | 95.79 | 28.59 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convnext/convnext_tiny_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/convnext/convnext_tiny-ae5ff8d7.ckpt) |
| convnext_small | D910x64-G | 83.40 | 96.36 | 50.22 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convnext/convnext_small_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/convnext/convnext_small-e23008f3.ckpt) |
| convnext_base | D910x64-G | 83.32 | 96.24 | 88.59 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convnext/convnext_base_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/convnext/convnext_base-ee3544b8.ckpt) |

</div>

Expand Down
6 changes: 3 additions & 3 deletions configs/convnextv2/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,9 +22,9 @@ Our reproduced model performance on ImageNet-1K is reported as follows.

<div align="center">

| Model | Context | Top-1 (%) | Top-5 (%) | Params (M) | Recipe | Download |
|-----------------|----------|-----------|-----------|------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| ConvNeXtV2_tiny | D910x8-G | 82.43 | 95.98 | 28.64 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convnextv2/convnextv2_tiny_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/convnextv2/convnextv2_tiny-d441ba2c.ckpt) |
| Model | Context | Top-1 (%) | Top-5 (%) | Params (M) | Recipe | Download |
|------------------|----------|-----------|-----------|------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| convnextv2_tiny | D910x8-G | 82.43 | 95.98 | 28.64 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/convnextv2/convnextv2_tiny_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/convnextv2/convnextv2_tiny-d441ba2c.ckpt) |

</div>

Expand Down
4 changes: 2 additions & 2 deletions configs/crossvit/README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Crossvit
# CrossViT
> [CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification](https://arxiv.org/abs/2103.14899)
## Introduction
Expand Down Expand Up @@ -77,7 +77,7 @@ python train.py --config configs/crossvit/crossvit_15_ascend.yaml --data_dir /pa
To validate the accuracy of the trained model, you can use `validate.py` and parse the checkpoint path with `--ckpt_path`.

```
python validate.py -c configs/crossvit/crossvit15_ascend.yaml --data_dir /path/to/imagenet --ckpt_path /path/to/ckpt
python validate.py -c configs/crossvit/crossvit_15_ascend.yaml --data_dir /path/to/imagenet --ckpt_path /path/to/ckpt
```

### Deployment
Expand Down
2 changes: 1 addition & 1 deletion configs/crossvit/crossvit_15_ascend.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ crop_pct: 0.935
ema: True

# model
model: 'crossvit15'
model: 'crossvit_15'
num_classes: 1000
pretrained: False
ckpt_path: ''
Expand Down
2 changes: 1 addition & 1 deletion configs/crossvit/crossvit_18_ascend.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ crop_pct: 0.935
ema: True

# model
model: 'crossvit18'
model: 'crossvit_18'
num_classes: 1000
pretrained: False
ckpt_path: ''
Expand Down
2 changes: 1 addition & 1 deletion configs/crossvit/crossvit_9_ascend.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ color_jitter: 0.4
crop_pct: 0.935

# model
model: 'crossvit9'
model: 'crossvit_9'
num_classes: 1000
pretrained: False
ckpt_path: ''
Expand Down
12 changes: 6 additions & 6 deletions configs/densenet/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,12 +37,12 @@ Our reproduced model performance on ImageNet-1K is reported as follows.

<div align="center">

| Model | Context | Top-1 (%) | Top-5 (%) | Params (M) | Recipe | Download |
|--------------|----------|-----------|-----------|------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| densenet_121 | D910x8-G | 75.64 | 92.84 | 8.06 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/densenet/densenet_121_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/densenet/densenet121-120_5004_Ascend.ckpt) |
| densenet_161 | D910x8-G | 79.09 | 94.66 | 28.90 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/densenet/densenet_161_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/densenet/densenet161-120_5004_Ascend.ckpt) |
| densenet_169 | D910x8-G | 77.26 | 93.71 | 14.31 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/densenet/densenet_169_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/densenet/densenet169-120_5004_Ascend.ckpt) |
| densenet_201 | D910x8-G | 78.14 | 94.08 | 20.24 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/densenet/densenet_201_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/densenet/densenet201-120_5004_Ascend.ckpt) |
| Model | Context | Top-1 (%) | Top-5 (%) | Params (M) | Recipe | Download |
|-------------|----------|-----------|-----------|------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| densenet121 | D910x8-G | 75.64 | 92.84 | 8.06 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/densenet/densenet_121_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/densenet/densenet121-120_5004_Ascend.ckpt) |
| densenet161 | D910x8-G | 79.09 | 94.66 | 28.90 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/densenet/densenet_161_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/densenet/densenet161-120_5004_Ascend.ckpt) |
| densenet169 | D910x8-G | 77.26 | 93.71 | 14.31 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/densenet/densenet_169_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/densenet/densenet169-120_5004_Ascend.ckpt) |
| densenet201 | D910x8-G | 78.14 | 94.08 | 20.24 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/densenet/densenet_201_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/densenet/densenet201-120_5004_Ascend.ckpt) |

</div>

Expand Down
12 changes: 6 additions & 6 deletions configs/dpn/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,12 +32,12 @@ Our reproduced model performance on ImageNet-1K is reported as follows.

<div align="center">

| Model | Context | Top-1 (%) | Top-5 (%) | Params (M) | Recipe | Download |
|-------|----------|-----------|-----------|------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| dpn92 | D910x8-G | 79.46 | 94.49 | 37.79 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/dpn/dpn92_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/dpn/dpn92-e3e0fca.ckpt) |
| dpn98 | D910x8-G | 79.94 | 94.57 | 61.74 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/dpn/dpn98_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/dpn/dpn98-119a8207.ckpt) |
| dpn107 | D910x8-G | 80.05 | 94.74 | 87.13 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/dpn/dpn107_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/dpn/dpn107-7d7df07b.ckpt) |
| dpn131 | D910x8-G | 80.07 | 94.72 | 79.48 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/dpn/dpn131_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/dpn/dpn131-47f084b3.ckpt) |
| Model | Context | Top-1 (%) | Top-5 (%) | Params (M) | Recipe | Download |
|---------|----------|-----------|-----------|------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| dpn92 | D910x8-G | 79.46 | 94.49 | 37.79 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/dpn/dpn92_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/dpn/dpn92-e3e0fca.ckpt) |
| dpn98 | D910x8-G | 79.94 | 94.57 | 61.74 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/dpn/dpn98_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/dpn/dpn98-119a8207.ckpt) |
| dpn107 | D910x8-G | 80.05 | 94.74 | 87.13 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/dpn/dpn107_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/dpn/dpn107-7d7df07b.ckpt) |
| dpn131 | D910x8-G | 80.07 | 94.72 | 79.48 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/dpn/dpn131_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/dpn/dpn131-47f084b3.ckpt) |

</div>

Expand Down
6 changes: 3 additions & 3 deletions configs/ghostnet/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,9 +29,9 @@ Our reproduced model performance on ImageNet-1K is reported as follows.

| Model | Context | Top-1 (%) | Top-5 (%) | Params (M) | Recipe | Download |
|--------------|----------|-----------|-----------|------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| GhostNet_050 | D910x8-G | 66.03 | 86.64 | 2.60 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/ghostnet/ghostnet_050_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/ghostnet/ghostnet_050-85b91860.ckpt) |
| GhostNet_100 | D910x8-G | 73.78 | 91.66 | 5.20 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/ghostnet/ghostnet_100_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/ghostnet/ghostnet_100-bef8025a.ckpt) |
| GhostNet_130 | D910x8-G | 75.50 | 92.56 | 7.39 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/ghostnet/ghostnet_130_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/ghostnet/ghostnet_130-cf4c235c.ckpt) |
| ghostnet_050 | D910x8-G | 66.03 | 86.64 | 2.60 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/ghostnet/ghostnet_050_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/ghostnet/ghostnet_050-85b91860.ckpt) |
| ghostnet_100 | D910x8-G | 73.78 | 91.66 | 5.20 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/ghostnet/ghostnet_100_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/ghostnet/ghostnet_100-bef8025a.ckpt) |
| ghostnet_130 | D910x8-G | 75.50 | 92.56 | 7.39 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/ghostnet/ghostnet_130_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/ghostnet/ghostnet_130-cf4c235c.ckpt) |

</div>

Expand Down
4 changes: 2 additions & 2 deletions configs/googlenet/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ training results.[[1](#references)]
<img src="https://user-images.githubusercontent.com/53842165/210749903-5ff23c0e-547f-487d-bb64-70b6e99031ea.jpg" width=180 />
</p>
<p align="center">
<em>Figure 1. Architecture of GoogLENet [<a href="#references">1</a>] </em>
<em>Figure 1. Architecture of GoogLeNet [<a href="#references">1</a>] </em>
</p>

## Results
Expand All @@ -25,7 +25,7 @@ Our reproduced model performance on ImageNet-1K is reported as follows.

| Model | Context | Top-1 (%) | Top-5 (%) | Params (M) | Recipe | Download |
|-----------|----------|-----------|-----------|------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| GoogLeNet | D910x8-G | 72.68 | 90.89 | 6.99 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/googlenet/googlenet_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/googlenet/googlenet-5552fcd3.ckpt) |
| googlenet | D910x8-G | 72.68 | 90.89 | 6.99 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/googlenet/googlenet_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/googlenet/googlenet-5552fcd3.ckpt) |

</div>

Expand Down
4 changes: 2 additions & 2 deletions configs/inceptionv3/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
## Introduction

InceptionV3 is an upgraded version of GoogleNet. One of the most important improvements of V3 is Factorization, which
InceptionV3 is an upgraded version of GoogLeNet. One of the most important improvements of V3 is Factorization, which
decomposes 7x7 into two one-dimensional convolutions (1x7, 7x1), and 3x3 is the same (1x3, 3x1), such benefits, both It
can accelerate the calculation (excess computing power can be used to deepen the network), and can split 1 conv into 2
convs, which further increases the network depth and increases the nonlinearity of the network. It is also worth noting
Expand All @@ -26,7 +26,7 @@ Our reproduced model performance on ImageNet-1K is reported as follows.

| Model | Context | Top-1 (%) | Top-5 (%) | Params (M) | Recipe | Download |
|--------------|----------|-----------|-----------|------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Inception_v3 | D910x8-G | 79.11 | 94.40 | 27.20 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/inceptionv3/inception_v3_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/inception_v3/inception_v3-38f67890.ckpt) |
| inception_v3 | D910x8-G | 79.11 | 94.40 | 27.20 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/inceptionv3/inception_v3_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/inception_v3/inception_v3-38f67890.ckpt) |

</div>

Expand Down
2 changes: 1 addition & 1 deletion configs/inceptionv4/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ Our reproduced model performance on ImageNet-1K is reported as follows.

| Model | Context | Top-1 (%) | Top-5 (%) | Params (M) | Recipe | Download |
|--------------|----------|-----------|-----------|------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Inception_v4 | D910x8-G | 80.88 | 95.34 | 42.74 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/inceptionv4/inception_v4_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/inception_v4/inception_v4-db9c45b3.ckpt) |
| inception_v4 | D910x8-G | 80.88 | 95.34 | 42.74 | [yaml](https://github.com/mindspore-lab/mindcv/blob/main/configs/inceptionv4/inception_v4_ascend.yaml) | [weights](https://download.mindspore.cn/toolkits/mindcv/inception_v4/inception_v4-db9c45b3.ckpt) |

</div>

Expand Down
Loading

0 comments on commit 85450da

Please sign in to comment.