-
Notifications
You must be signed in to change notification settings - Fork 2.8k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add high-frequency feature engineering code #1022
Merged
Merged
Changes from all commits
Commits
Show all changes
4 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,164 @@ | ||
from qlib.data.dataset.handler import DataHandler, DataHandlerLP | ||
|
||
EPSILON = 1e-4 | ||
|
||
|
||
class HighFreqHandler(DataHandlerLP): | ||
def __init__( | ||
self, | ||
instruments="csi300", | ||
start_time=None, | ||
end_time=None, | ||
infer_processors=[], | ||
learn_processors=[], | ||
fit_start_time=None, | ||
fit_end_time=None, | ||
drop_raw=True, | ||
): | ||
def check_transform_proc(proc_l): | ||
new_l = [] | ||
for p in proc_l: | ||
p["kwargs"].update( | ||
{ | ||
"fit_start_time": fit_start_time, | ||
"fit_end_time": fit_end_time, | ||
} | ||
) | ||
new_l.append(p) | ||
return new_l | ||
|
||
infer_processors = check_transform_proc(infer_processors) | ||
learn_processors = check_transform_proc(learn_processors) | ||
|
||
data_loader = { | ||
"class": "QlibDataLoader", | ||
"kwargs": { | ||
"config": self.get_feature_config(), | ||
"swap_level": False, | ||
"freq": "1min", | ||
}, | ||
} | ||
super().__init__( | ||
instruments=instruments, | ||
start_time=start_time, | ||
end_time=end_time, | ||
data_loader=data_loader, | ||
infer_processors=infer_processors, | ||
learn_processors=learn_processors, | ||
drop_raw=drop_raw, | ||
) | ||
|
||
def get_feature_config(self): | ||
fields = [] | ||
names = [] | ||
|
||
template_if = "If(IsNull({1}), {0}, {1})" | ||
template_paused = "Select(Gt($hx_paused_num, 1.001), {0})" | ||
|
||
def get_normalized_price_feature(price_field, shift=0): | ||
# norm with the close price of 237th minute of yesterday. | ||
if shift == 0: | ||
template_norm = "{0}/DayLast(Ref({1}, 243))" | ||
else: | ||
template_norm = "Ref({0}, " + str(shift) + ")/DayLast(Ref({1}, 243))" | ||
|
||
template_fillnan = "FFillNan({0})" | ||
# calculate -> ffill -> remove paused | ||
feature_ops = template_paused.format( | ||
template_fillnan.format( | ||
template_norm.format(template_if.format("$close", price_field), template_fillnan.format("$close")) | ||
) | ||
) | ||
return feature_ops | ||
|
||
fields += [get_normalized_price_feature("$open", 0)] | ||
fields += [get_normalized_price_feature("$high", 0)] | ||
fields += [get_normalized_price_feature("$low", 0)] | ||
fields += [get_normalized_price_feature("$close", 0)] | ||
fields += [get_normalized_price_feature("$vwap", 0)] | ||
names += ["$open", "$high", "$low", "$close", "$vwap"] | ||
|
||
fields += [get_normalized_price_feature("$open", 240)] | ||
fields += [get_normalized_price_feature("$high", 240)] | ||
fields += [get_normalized_price_feature("$low", 240)] | ||
fields += [get_normalized_price_feature("$close", 240)] | ||
fields += [get_normalized_price_feature("$vwap", 240)] | ||
names += ["$open_1", "$high_1", "$low_1", "$close_1", "$vwap_1"] | ||
|
||
# calculate and fill nan with 0 | ||
template_gzero = "If(Ge({0}, 0), {0}, 0)" | ||
fields += [ | ||
template_gzero.format( | ||
template_paused.format( | ||
"If(IsNull({0}), 0, {0})".format("{0}/Ref(DayLast(Mean({0}, 7200)), 240)".format("$volume")) | ||
) | ||
) | ||
] | ||
names += ["$volume"] | ||
|
||
fields += [ | ||
template_gzero.format( | ||
template_paused.format( | ||
"If(IsNull({0}), 0, {0})".format( | ||
"Ref({0}, 240)/Ref(DayLast(Mean({0}, 7200)), 240)".format("$volume") | ||
) | ||
) | ||
) | ||
] | ||
names += ["$volume_1"] | ||
|
||
return fields, names | ||
|
||
|
||
class HighFreqBacktestHandler(DataHandler): | ||
def __init__( | ||
self, | ||
instruments="csi300", | ||
start_time=None, | ||
end_time=None, | ||
): | ||
data_loader = { | ||
"class": "QlibDataLoader", | ||
"kwargs": { | ||
"config": self.get_feature_config(), | ||
"swap_level": False, | ||
"freq": "1min", | ||
}, | ||
} | ||
super().__init__( | ||
instruments=instruments, | ||
start_time=start_time, | ||
end_time=end_time, | ||
data_loader=data_loader, | ||
) | ||
|
||
def get_feature_config(self): | ||
fields = [] | ||
names = [] | ||
|
||
template_if = "If(IsNull({1}), {0}, {1})" | ||
template_paused = "Select(Gt($hx_paused_num, 1.001), {0})" | ||
# template_paused = "{0}" | ||
template_fillnan = "FFillNan({0})" | ||
fields += [ | ||
template_fillnan.format(template_paused.format("$close")), | ||
] | ||
names += ["$close0"] | ||
|
||
fields += [ | ||
template_paused.format( | ||
template_if.format( | ||
template_fillnan.format("$close"), | ||
"$vwap", | ||
) | ||
) | ||
] | ||
names += ["$vwap0"] | ||
|
||
fields += [template_paused.format("If(IsNull({0}), 0, {0})".format("$volume"))] | ||
names += ["$volume0"] | ||
|
||
fields += [template_paused.format("If(IsNull({0}), 0, {0})".format("$factor"))] | ||
names += ["$factor0"] | ||
|
||
return fields, names |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
import os | ||
|
||
import numpy as np | ||
import pandas as pd | ||
from qlib.data.dataset.processor import Processor | ||
from qlib.data.dataset.utils import fetch_df_by_index | ||
from typing import Dict | ||
|
||
|
||
class HighFreqTrans(Processor): | ||
def __init__(self, dtype: str = "bool"): | ||
self.dtype = dtype | ||
|
||
def fit(self, df_features): | ||
pass | ||
|
||
def __call__(self, df_features): | ||
if self.dtype == "bool": | ||
return df_features.astype(np.int8) | ||
else: | ||
return df_features.astype(np.float32) | ||
|
||
|
||
class HighFreqNorm(Processor): | ||
def __init__( | ||
self, | ||
fit_start_time: pd.Timestamp, | ||
fit_end_time: pd.Timestamp, | ||
feature_save_dir: str, | ||
norm_groups: Dict[str, int], | ||
): | ||
|
||
self.fit_start_time = fit_start_time | ||
self.fit_end_time = fit_end_time | ||
self.feature_save_dir = feature_save_dir | ||
self.norm_groups = norm_groups | ||
|
||
def fit(self, df_features) -> None: | ||
if os.path.exists(self.feature_save_dir) and len(os.listdir(self.feature_save_dir)) != 0: | ||
return | ||
os.makedirs(self.feature_save_dir) | ||
fetch_df = fetch_df_by_index(df_features, slice(self.fit_start_time, self.fit_end_time), level="datetime") | ||
del df_features | ||
index = 0 | ||
names = {} | ||
for name, dim in self.norm_groups.items(): | ||
names[name] = slice(index, index + dim) | ||
index += dim | ||
for name, name_val in names.items(): | ||
df_values = fetch_df.iloc(axis=1)[name_val].values | ||
if name.endswith("volume"): | ||
df_values = np.log1p(df_values) | ||
self.feature_mean = np.nanmean(df_values) | ||
np.save(self.feature_save_dir + name + "_mean.npy", self.feature_mean) | ||
df_values = df_values - self.feature_mean | ||
self.feature_std = np.nanstd(np.absolute(df_values)) | ||
np.save(self.feature_save_dir + name + "_std.npy", self.feature_std) | ||
df_values = df_values / self.feature_std | ||
np.save(self.feature_save_dir + name + "_vmax.npy", np.nanmax(df_values)) | ||
np.save(self.feature_save_dir + name + "_vmin.npy", np.nanmin(df_values)) | ||
return | ||
|
||
def __call__(self, df_features): | ||
if "date" in df_features: | ||
df_features.droplevel("date", inplace=True) | ||
df_values = df_features.values | ||
index = 0 | ||
names = {} | ||
for name, dim in self.norm_groups.items(): | ||
names[name] = slice(index, index + dim) | ||
index += dim | ||
for name, name_val in names.items(): | ||
feature_mean = np.load(self.feature_save_dir + name + "_mean.npy") | ||
feature_std = np.load(self.feature_save_dir + name + "_std.npy") | ||
|
||
if name.endswith("volume"): | ||
df_values[:, name_val] = np.log1p(df_values[:, name_val]) | ||
df_values[:, name_val] -= feature_mean | ||
df_values[:, name_val] /= feature_std | ||
df_features = pd.DataFrame(data=df_values, index=df_features.index, columns=df_features.columns) | ||
return df_features.fillna(0) |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Add in the file headers