This repository has been archived by the owner on Sep 18, 2024. It is now read-only.
NNI v1.2 Release
Release 1.2 - 12/2/2019
Major Features
- Feature Engineering
- New feature engineering interface
- Feature selection algorithms: Gradient feature selector & GBDT selector
- Examples for feature engineering
- Neural Architecture Search (NAS) on NNI
- New NAS interface
- NAS algorithms: ENAS, DARTS, P-DARTS (in PyTorch)
- NAS in classic mode (each trial runs independently)
- Model compression
- New model pruning algorithms: lottery ticket pruning approach, L1Filter pruner, Slim pruner, FPGM pruner
- New model quantization algorithms: QAT quantizer, DoReFa quantizer
- Support the API for exporting compressed model.
- Training Service
- Support OpenPAI token authentication
- Examples:
- Engineering Improvements
- For remote training service, trial jobs require no GPU are now scheduled with round-robin policy instead of random.
- Pylint rules added to check pull requests, new pull requests need to comply with these pylint rules.
- Web Portal & User Experience
- Support user to add customized trial.
- User can zoom out/in in detail graphs, except Hyper-parameter.
- Documentation
- Improved NNI API documentation with more API docstring.