Skip to content
This repository has been archived by the owner on Sep 18, 2024. It is now read-only.

NAS Benchmark #2578

Merged
merged 42 commits into from
Jun 29, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
42 commits
Select commit Hold shift + click to select a range
a233727
Adding NAS Benchmark (201)
ultmaster Jun 18, 2020
c0c8645
Add missing endline
ultmaster Jun 18, 2020
21a93df
Update script
ultmaster Jun 18, 2020
b78877a
Draft for NAS-Bench-101
ultmaster Jun 19, 2020
3fecdb1
Update NAS-Bench-101
ultmaster Jun 19, 2020
f0dc0b9
Update constants
ultmaster Jun 19, 2020
435e47d
Add API
ultmaster Jun 19, 2020
c059045
Update API
ultmaster Jun 19, 2020
44baec7
Fix typo
ultmaster Jun 19, 2020
22123e1
Draft for NDS
ultmaster Jun 20, 2020
6e25351
Fix issues in storing loss
ultmaster Jun 20, 2020
d5b7de1
Fix cell_spec problem
ultmaster Jun 24, 2020
24f95e5
Finalize NDS
ultmaster Jun 25, 2020
948822a
Update time consumption
ultmaster Jun 25, 2020
e654ff0
Add nds query function
ultmaster Jun 25, 2020
3e73ee0
Update documentation for NAS-Bench-101
ultmaster Jun 25, 2020
3d12bf8
Reformat generators
ultmaster Jun 25, 2020
5412777
Add NAS-Bench-201 docs
ultmaster Jun 25, 2020
d4fc6e6
Unite constant names
ultmaster Jun 25, 2020
b75b619
Update docstring
ultmaster Jun 25, 2020
67f66df
Update docstring
ultmaster Jun 26, 2020
3eec48f
Update rst
ultmaster Jun 26, 2020
984972a
Update scripts
ultmaster Jun 26, 2020
9f9d851
Add git as dependency
ultmaster Jun 26, 2020
6d7766a
Apt update
ultmaster Jun 26, 2020
a217023
Update installation scripts
ultmaster Jun 26, 2020
aea8cef
Fix dependency for pipeline
ultmaster Jun 26, 2020
9022a8b
Fix NDS script
ultmaster Jun 26, 2020
2f6da90
Fix NAS-Bench-201 installation
ultmaster Jun 26, 2020
aa66a6b
Add example notebook
ultmaster Jun 27, 2020
abb681a
Correct latency dimension
ultmaster Jun 27, 2020
a7b6c2e
Merge branch 'master' into nasbenchmark-2006
ultmaster Jun 28, 2020
7f7a97c
shortcuts -> query
ultmaster Jun 28, 2020
bdd26cf
Merge branch 'nasbenchmark-2006' of github.com:ultmaster/nni into nas…
ultmaster Jun 28, 2020
907dccb
Change run -> trial, ComputedStats -> TrialStats
ultmaster Jun 28, 2020
2872ba2
ipynb needs re-generation
ultmaster Jun 28, 2020
77e703c
Fix NAS rst
ultmaster Jun 28, 2020
1f905c0
Fix documentation and pylint
ultmaster Jun 28, 2020
197d308
Fix pylint
ultmaster Jun 28, 2020
f25f6bd
Add pandoc as dependency
ultmaster Jun 28, 2020
6926d3e
Update pandoc dependency
ultmaster Jun 28, 2020
d91851d
Fix documentation broken link
ultmaster Jun 28, 2020
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 4 additions & 3 deletions azure-pipelines.yml
Original file line number Diff line number Diff line change
Expand Up @@ -26,11 +26,12 @@ jobs:
displayName: 'Run eslint'
- script: |
set -e
sudo apt-get install -y pandoc
python3 -m pip install torch==1.5.0+cpu torchvision==0.6.0+cpu -f https://download.pytorch.org/whl/torch_stable.html --user
python3 -m pip install tensorflow==2.2.0 --user
python3 -m pip install keras==2.4.2 --user
python3 -m pip install gym onnx --user
python3 -m pip install sphinx==1.8.3 sphinx-argparse==0.2.5 sphinx-markdown-tables==0.0.9 sphinx-rtd-theme==0.4.2 sphinxcontrib-websupport==1.1.0 recommonmark==0.5.0 --user
python3 -m pip install gym onnx peewee --user
python3 -m pip install sphinx==1.8.3 sphinx-argparse==0.2.5 sphinx-markdown-tables==0.0.9 sphinx-rtd-theme==0.4.2 sphinxcontrib-websupport==1.1.0 recommonmark==0.5.0 nbsphinx --user
sudo apt-get install swig -y
nnictl package install --name=SMAC
nnictl package install --name=BOHB
Expand Down Expand Up @@ -68,7 +69,7 @@ jobs:
python3 -m pip install torch==1.3.1+cpu torchvision==0.4.2+cpu -f https://download.pytorch.org/whl/torch_stable.html --user
python3 -m pip install tensorflow==1.15.2 --user
python3 -m pip install keras==2.1.6 --user
python3 -m pip install gym onnx --user
python3 -m pip install gym onnx peewee --user
sudo apt-get install swig -y
nnictl package install --name=SMAC
nnictl package install --name=BOHB
Expand Down
172 changes: 172 additions & 0 deletions docs/en_US/NAS/Benchmarks.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,172 @@
# NAS Benchmarks (experimental)

```eval_rst
.. toctree::
:hidden:

Example Usages <BenchmarksExample>
```

## Prerequisites

* Please prepare a folder to household all the benchmark databases. By default, it can be found at `${HOME}/.nni/nasbenchmark`. You can place it anywhere you like, and specify it in `NASBENCHMARK_DIR` before importing NNI.
* Please install `peewee` via `pip install peewee`, which NNI uses to connect to database.

## Data Preparation

To avoid storage and legal issues, we do not provide any prepared databases. We strongly recommend users to use docker to run the generation scripts, to ease the burden of installing multiple dependencies. Please follow the following steps.

1. Clone NNI repo. Replace `${NNI_VERSION}` with a released version name or branch name, e.g., `v1.6`.

```bash
git clone -b ${NNI_VERSION} https://github.com/microsoft/nni
```

2. Run docker.

For NAS-Bench-101,

```bash
docker run -v ${HOME}/.nni/nasbenchmark:/outputs -v /path/to/your/nni:/nni tensorflow/tensorflow:1.15.2-py3 /bin/bash /nni/examples/nas/benchmarks/nasbench101.sh
```

For NAS-Bench-201,

```bash
docker run -v ${HOME}/.nni/nasbenchmark:/outputs -v /path/to/your/nni:/nni ufoym/deepo:pytorch-cpu /bin/bash /nni/examples/nas/benchmarks/nasbench201.sh
```

For NDS,

```bash
docker run -v ${HOME}/.nni/nasbenchmark:/outputs -v /path/to/your/nni:/nni python:3.7 /bin/bash /nni/examples/nas/benchmarks/nds.sh
```

Please make sure there is at least 10GB free disk space and note that the conversion process can take up to hours to complete.

## Example Usages

Please refer to [examples usages of Benchmarks API](./BenchmarksExample).

## NAS-Bench-101

[Paper link](https://arxiv.org/abs/1902.09635) &nbsp; &nbsp; [Open-source](https://github.com/google-research/nasbench)

NAS-Bench-101 contains 423,624 unique neural networks, combined with 4 variations in number of epochs (4, 12, 36, 108), each of which is trained 3 times. It is a cell-wise search space, which constructs and stacks a cell by enumerating DAGs with at most 7 operators, and no more than 9 connections. All operators can be chosen from `CONV3X3_BN_RELU`, `CONV1X1_BN_RELU` and `MAXPOOL3X3`, except the first operator (always `INPUT`) and last operator (always `OUTPUT`).

Notably, NAS-Bench-101 eliminates invalid cells (e.g., there is no path from input to output, or there is redundant computation). Furthermore, isomorphic cells are de-duplicated, i.e., all the remaining cells are computationally unique.

### API Documentation

```eval_rst
.. autofunction:: nni.nas.benchmarks.nasbench101.query_nb101_trial_stats

.. autoattribute:: nni.nas.benchmarks.nasbench101.INPUT

.. autoattribute:: nni.nas.benchmarks.nasbench101.OUTPUT

.. autoattribute:: nni.nas.benchmarks.nasbench101.CONV3X3_BN_RELU

.. autoattribute:: nni.nas.benchmarks.nasbench101.CONV1X1_BN_RELU

.. autoattribute:: nni.nas.benchmarks.nasbench101.MAXPOOL3X3

.. autoclass:: nni.nas.benchmarks.nasbench101.Nb101TrialConfig

.. autoclass:: nni.nas.benchmarks.nasbench101.Nb101TrialStats

.. autoclass:: nni.nas.benchmarks.nasbench101.Nb101IntermediateStats

.. autofunction:: nni.nas.benchmarks.nasbench101.graph_util.nasbench_format_to_architecture_repr

.. autofunction:: nni.nas.benchmarks.nasbench101.graph_util.infer_num_vertices

.. autofunction:: nni.nas.benchmarks.nasbench101.graph_util.hash_module
```

## NAS-Bench-201

[Paper link](https://arxiv.org/abs/2001.00326) &nbsp; &nbsp; [Open-source API](https://github.com/D-X-Y/NAS-Bench-201) &nbsp; &nbsp;[Implementations](https://github.com/D-X-Y/AutoDL-Projects)

NAS-Bench-201 is a cell-wise search space that views nodes as tensors and edges as operators. The search space contains all possible densely-connected DAGs with 4 nodes, resulting in 15,625 candidates in total. Each operator (i.e., edge) is selected from a pre-defined operator set (`NONE`, `SKIP_CONNECT`, `CONV_1X1`, `CONV_3X3` and `AVG_POOL_3X3`). Training appraoches vary in the dataset used (CIFAR-10, CIFAR-100, ImageNet) and number of epochs scheduled (12 and 200). Each combination of architecture and training approach is repeated 1 - 3 times with different random seeds.

### API Documentation


```eval_rst
.. autofunction:: nni.nas.benchmarks.nasbench201.query_nb201_trial_stats

.. autoattribute:: nni.nas.benchmarks.nasbench201.NONE

.. autoattribute:: nni.nas.benchmarks.nasbench201.SKIP_CONNECT

.. autoattribute:: nni.nas.benchmarks.nasbench201.CONV_1X1

.. autoattribute:: nni.nas.benchmarks.nasbench201.CONV_3X3

.. autoattribute:: nni.nas.benchmarks.nasbench201.AVG_POOL_3X3

.. autoclass:: nni.nas.benchmarks.nasbench201.Nb201TrialConfig

.. autoclass:: nni.nas.benchmarks.nasbench201.Nb201TrialStats

.. autoclass:: nni.nas.benchmarks.nasbench201.Nb201IntermediateStats
```

## NDS

[Paper link](https://arxiv.org/abs/1905.13214) &nbsp; &nbsp; [Open-source](https://github.com/facebookresearch/nds)

_On Network Design Spaces for Visual Recognition_ released trial statistics of over 100,000 configurations (models + hyper-parameters) sampled from multiple model families, including vanilla (feedforward network loosely inspired by VGG), ResNet and ResNeXt (residual basic block and residual bottleneck block) and NAS cells (following popular design from NASNet, Ameoba, PNAS, ENAS and DARTS). Most configurations are trained only once with a fixed seed, except a few that are trained twice or three times.

Instead of storing results obtained with different configurations in separate files, we dump them into one single database to enable comparison in multiple dimensions. Specifically, we use `model_family` to distinguish model types, `model_spec` for all hyper-parameters needed to build this model, `cell_spec` for detailed information on operators and connections if it is a NAS cell, `generator` to denote the sampling policy through which this configuration is generated. Refer to API documentation for details.

## Available Operators

Here is a list of available operators used in NDS.

```eval_rst
.. autoattribute:: nni.nas.benchmarks.nds.constants.NONE

.. autoattribute:: nni.nas.benchmarks.nds.constants.SKIP_CONNECT

.. autoattribute:: nni.nas.benchmarks.nds.constants.AVG_POOL_3X3

.. autoattribute:: nni.nas.benchmarks.nds.constants.MAX_POOL_3X3

.. autoattribute:: nni.nas.benchmarks.nds.constants.MAX_POOL_5X5

.. autoattribute:: nni.nas.benchmarks.nds.constants.MAX_POOL_7X7

.. autoattribute:: nni.nas.benchmarks.nds.constants.CONV_1X1

.. autoattribute:: nni.nas.benchmarks.nds.constants.CONV_3X3

.. autoattribute:: nni.nas.benchmarks.nds.constants.CONV_3X1_1X3

.. autoattribute:: nni.nas.benchmarks.nds.constants.CONV_7X1_1X7

.. autoattribute:: nni.nas.benchmarks.nds.constants.DIL_CONV_3X3

.. autoattribute:: nni.nas.benchmarks.nds.constants.DIL_CONV_5X5

.. autoattribute:: nni.nas.benchmarks.nds.constants.SEP_CONV_3X3

.. autoattribute:: nni.nas.benchmarks.nds.constants.SEP_CONV_5X5

.. autoattribute:: nni.nas.benchmarks.nds.constants.SEP_CONV_7X7

.. autoattribute:: nni.nas.benchmarks.nds.constants.DIL_SEP_CONV_3X3
```

### API Documentation

```eval_rst
.. autofunction:: nni.nas.benchmarks.nds.query_nds_trial_stats

.. autoclass:: nni.nas.benchmarks.nds.NdsTrialConfig

.. autoclass:: nni.nas.benchmarks.nds.NdsTrialStats

.. autoclass:: nni.nas.benchmarks.nds.NdsIntermediateStats
```
Loading