-
Notifications
You must be signed in to change notification settings - Fork 76
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
1,160 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
# ADE20k Semantic segmentation with CSWin | ||
|
||
|
||
## Results and Models | ||
|
||
| Backbone | Method | pretrain | Crop Size | Lr Schd | mIoU | mIoU (ms+flip) | #params | FLOPs | config | model | log | | ||
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | ||
| CSWin-T | UPerNet | ImageNet-1K | 512x512 | 160K | 49.3 | 50.7 | 60M | 959G | [`config`](configs/cswin/upernet_cswin_tiny.py) | [model]() | [log]() | | ||
| CSWin-S | UperNet | ImageNet-1K | 512x512 | 160K | 50.4 | 51.5 | 65M | 1027G | [`config`](configs/cswin/upernet_cswin_small.py) |[model]() | [log]() | | ||
| CSWin-B | UperNet | ImageNet-1K | 512x512 | 160K | 51.1 | 52.2 | 109M | 1222G | [`config`](configs/cswin/upernet_cswin_base.py) |[model]() | [log]() | | ||
|
||
|
||
## Getting started | ||
|
||
1. Install the [Swin_Segmentation](https://github.com/SwinTransformer/Swin-Transformer-Semantic-Segmentation) repository and some required packages. | ||
|
||
```bash | ||
git clone https://github.com/SwinTransformer/Swin-Transformer-Semantic-Segmentation | ||
bash install_req.sh | ||
``` | ||
|
||
2. Move the CSWin configs and backbone file to the corresponding folder. | ||
|
||
```bash | ||
cp -r configs/cswin <MMSEG_PATH>/configs/ | ||
cp config/_base/upernet_cswin.py <MMSEG_PATH>/config/_base_/models | ||
cp backbone/cswin_transformer.py <MMSEG_PATH>/mmseg/models/backbones/ | ||
cp mmcv_custom/checkpoint.py <MMSEG_PATH>/mmcv_custom/ | ||
``` | ||
|
||
3. Install [apex](https://github.com/NVIDIA/apex) for mixed-precision training | ||
|
||
```bash | ||
git clone https://github.com/NVIDIA/apex | ||
cd apex | ||
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./ | ||
``` | ||
|
||
4. Follow the guide in [mmseg](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md) to prepare the ADE20k dataset. | ||
|
||
## Fine-tuning | ||
|
||
Command format: | ||
``` | ||
tools/dist_train.sh <CONFIG_PATH> <NUM_GPUS> --options model.pretrained=<PRETRAIN_MODEL_PATH> | ||
``` | ||
|
||
For example, using a CSWin-T backbone with UperNet: | ||
```bash | ||
bash tools/dist_train.sh \ | ||
configs/cswin/upernet_cswin_tiny.py 8 \ | ||
--options model.pretrained=<PRETRAIN_MODEL_PATH> | ||
``` | ||
|
||
pretrained models could be found at [main page](https://github.com/microsoft/CSWin-Transformer). | ||
|
||
More config files can be found at [`configs/cswin`](configs/cswin). | ||
|
||
|
||
## Evaluation | ||
|
||
Command format: | ||
``` | ||
tools/dist_test.sh <CONFIG_PATH> <CHECKPOINT_PATH> <NUM_GPUS> --eval mIoU | ||
tools/dist_test.sh <CONFIG_PATH> <CHECKPOINT_PATH> <NUM_GPUS> --eval mIoU --aug-test | ||
``` | ||
|
||
For example, evaluate a CSWin-T backbone with UperNet: | ||
```bash | ||
bash tools/dist_test.sh configs/cswin/upernet_cswin_tiny.py \ | ||
<CHECKPOINT_PATH> 8 --eval mIoU | ||
``` | ||
|
||
|
||
--- | ||
|
||
## Acknowledgment | ||
|
||
This code is built using the [mmsegmentation](https://github.com/open-mmlab/mmsegmentation) library, [Timm](https://github.com/rwightman/pytorch-image-models) library, the [Swin](https://github.com/microsoft/Swin-Transformer) repository. |
Oops, something went wrong.