Skip to content

Commit

Permalink
Backport PR jupyterlab#1051: Added Developer documentation for stream…
Browse files Browse the repository at this point in the history
…ing responses
  • Loading branch information
srdas authored and meeseeksmachine committed Oct 28, 2024
1 parent cc6902b commit 985449a
Showing 1 changed file with 114 additions and 0 deletions.
114 changes: 114 additions & 0 deletions docs/source/developers/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -392,6 +392,120 @@ custom = "custom_package:CustomChatHandler"
Then, install your package so that Jupyter AI adds custom chat handlers
to the existing chat handlers.

## Streaming output from custom slash commands

Jupyter AI supports streaming output in the chat session. When a response is
streamed to the user, the user can watch the response being constructed in
real-time, which offers a visually pleasing user experience. Custom slash
commands can stream responses in chat by invoking the `stream_reply()` method,
provided by the `BaseChatHandler` class that custom slash commands inherit from.
Custom slash commands should always use `self.stream_reply()` to stream
responses, as it provides support for stopping the response stream from the UI.

To use `stream_reply()`, your slash command must bind a LangChain
[`Runnable`](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html)
to `self.llm_chain` in the `create_llm_chain()` method. Runnables can be created
by using LangChain Expression Language (LCEL). See below for an example
definition of `create_llm_chain()`, sourced from our implementation of `/fix` in
`fix.py`:

```python
def create_llm_chain(
self, provider: Type[BaseProvider], provider_params: Dict[str, str]
):
unified_parameters = {
"verbose": True,
**provider_params,
**(self.get_model_parameters(provider, provider_params)),
}
llm = provider(**unified_parameters)
self.llm = llm
prompt_template = FIX_PROMPT_TEMPLATE
self.prompt_template = prompt_template

runnable = prompt_template | llm # type:ignore
self.llm_chain = runnable
```

Once your chat handler binds a Runnable to `self.llm_chain` in
`self.create_llm_chain()`, you can define `process_message()` to invoke
`self.stream_reply()`, which streams a reply back to the user using
`self.llm_chain.astream()`.
`self.stream_reply()` has two required arguments:

- `input`: An input to your LangChain Runnable. This is usually a dictionary
whose keys are input variables specified in your prompt template, but may be
just a string if your Runnable does not use a prompt template.

- `message`: The `HumanChatMessage` being replied to.

An example of `process_message()` can also be sourced from our implementation of `/fix`:

```python
async def process_message(self, message: HumanChatMessage):
if not (message.selection and message.selection.type == "cell-with-error"):
self.reply(
"`/fix` requires an active code cell with error output. Please click on a cell with error output and retry.",
message,
)
return

# hint type of selection
selection: CellWithErrorSelection = message.selection

# parse additional instructions specified after `/fix`
extra_instructions = message.prompt[4:].strip() or "None."

self.get_llm_chain()
assert self.llm_chain

inputs = {
"extra_instructions": extra_instructions,
"cell_content": selection.source,
"traceback": selection.error.traceback,
"error_name": selection.error.name,
"error_value": selection.error.value,
}
await self.stream_reply(inputs, message, pending_msg="Analyzing error")
```

The last line of `process_message` above calls `stream_reply` in `base.py`.
Note that a custom pending message may also be passed.
The `stream_reply` function leverages the LCEL Runnable.
The function takes in the input, human message, and optional
pending message strings and configuration, as shown below:

```python
async def stream_reply(
self,
input: Input,
human_msg: HumanChatMessage,
pending_msg="Generating response",
config: Optional[RunnableConfig] = None,
):
"""
Streams a reply to a human message by invoking
`self.llm_chain.astream()`. A LangChain `Runnable` instance must be
bound to `self.llm_chain` before invoking this method.
Arguments
---------
- `input`: The input to your runnable. The type of `input` depends on
the runnable in `self.llm_chain`, but is usually a dictionary whose keys
refer to input variables in your prompt template.
- `human_msg`: The `HumanChatMessage` being replied to.
- `config` (optional): A `RunnableConfig` object that specifies
additional configuration when streaming from the runnable.
- `pending_msg` (optional): Changes the default pending message from
"Generating response".
"""
assert self.llm_chain
assert isinstance(self.llm_chain, Runnable)
```

## Custom message footer

You can provide a custom message footer that will be rendered under each message
Expand Down

0 comments on commit 985449a

Please sign in to comment.