Skip to content

A library for real-time video stream decoding to CUDA memory

License

Notifications You must be signed in to change notification settings

maxplatov/tensor-stream

 
 

Repository files navigation

TensorStream

TensorStream is a C++ library for real-time video streams (e.g., RTMP) decoding to CUDA memory which supports some additional features:

  • CUDA memory conversion to ATen Tensor for using it via Python in PyTorch Deep Learning models
  • Detecting basic video stream issues related to frames reordering/loss
  • Video Post Processing (VPP) operations: downscaling/upscaling, crops, color conversions, etc.

The library supports both Linux and Windows.

Simple example how to use TensorStream for deep learning tasks:

from tensor_stream import TensorStreamConverter, FourCC, Planes

reader = TensorStreamConverter("rtmp://127.0.0.1/live", cuda_device=0)
reader.initialize()
reader.start()

while need_predictions:
    # read the latest available frame from the stream
    tensor = reader.read(pixel_format=FourCC.BGR24,
                         width=256,                 # resize to 256x256 px
                         height=256,
                         normalization=True,        # normalize to range [0, 1]
                         planes_pos=Planes.PLANAR)  # dimension order [C, H, W]

    # tensor dtype is torch.float32, device is 'cuda:0', shape is (3, 256, 256)
    prediction = model(tensor.unsqueeze(0))
  • Initialize tensor stream with a video (e.g., a local file or a network video stream) and start reading it in a separate process.

  • Get the latest available frame from the stream and make a prediction.

Note: All tasks inside TensorStream processed on a GPU, so the output tensor is also located on the GPU.

Table of Contents

Install TensorStream

Dependencies

  • NVIDIA CUDA 11.8 or above
  • FFmpeg 6.0 or above
  • nv-codec-headers FFmpeg version of headers required to interface with Nvidias codec APIs
  • PyTorch 2.0 or above to build C++ extension for Python
  • Python 3.6 or above to build C++ extension for Python

It is convenient to use TensorStream in Docker containers. The provided Dockerfiles is supplied to create an image with all the necessary dependencies.

Installation from source

TensorStream source code

git clone -b master --single-branch https://github.com/osai-ai/tensor-stream.git
cd tensor-stream

C++ extension for Python

On Linux:

python setup.py install

On Windows:

set FFMPEG_PATH="Path to FFmpeg install folder"
set path=%path%;%FFMPEG_PATH%\bin
python setup.py install

C++ library:

On Linux:

mkdir build
cd build
cmake ..

On Windows:

set FFMPEG_PATH="Path to FFmpeg install folder"
mkdir build
cd build
cmake ..

Building examples and tests

Examples for Python and C++ can be found in c_examples and python_examples folders. Tests for C++ can be found in tests folder.

Python example

Can be executed via Python after TensorStream C++ extension for Python installation.

cd python_examples
python simple.py

C++ example and unit tests

On Linux:

cd c_examples  # tests
mkdir build
cd build
cmake -DCMAKE_PREFIX_PATH=$PWD/../../cmake ..

On Windows:

set FFMPEG_PATH="Path to FFmpeg install folder"
cd c_examples or tests
mkdir build
cd build
cmake -DCMAKE_PREFIX_PATH=%cd%\..\..\cmake ..

Docker image

To build TensorStream need to pass Pytorch version via TORCH_VERSION argument:

docker build --build-arg TORCH_VERSION=2.0 -t tensorstream .

Run with a bash command line and follow the installation guide

docker run --gpus=all -ti tensorstream bash

Usage

Python examples

  1. Simple example demonstrates RTMP to PyTorch tensor conversion. Let's consider some usage scenarios:

Note: You can pass --help to get the list of all available options, their description and default values

  • Convert an RTMP bitstream to RGB24 PyTorch tensors and dump the result to a dump.yuv file:
python simple.py -i tests/resources/bunny.mp4 -fc RGB24 -o dump

Warning: Dumps significantly affect performance. Suffix .yuv will be added to the output filename.

  • The same scenario with downscaling with nearest resize algorithm:
python simple.py -i tests/resources/bunny.mp4 -fc RGB24 -w 720 -h 480 --resize_type NEAREST -o dump

Note: Besides nearest resize algorithm, bilinear, bicubic and area (similar to OpenCV INTER_AREA) algorithms are available.

Warning: Resize algorithms applied to NV12, so b2b with popular frameworks, which perform resize on other than NV12 format, aren't guaranteed.

  • Number of frames to process can be limited by -n option:
python simple.py -i tests/resources/bunny.mp4 -fc RGB24 -w 720 -h 480 -o dump -n 100
  • The result file can be cropped via --crop option which takes coordinates of left top and right bottom corners as parameters:
python simple.py -i tests/resources/bunny.mp4 -fc RGB24 -w 720 -h 480 --crop 0,0,320,240 -o dump -n 100

Warning: Crop is applied before resize algorithm.

  • Output pixels format can be either torch.float32 or torch.uint8 depending on normalization option which can be True, False or not set so TensorStream will decide which value should be used:
python simple.py -i tests/resources/bunny.mp4 -fc RGB24 -w 720 -h 480 -o dump -n 100 --normalize True
  • Color planes in case of RGB can be either planar or merged and can be set via --planes option:
python simple.py -i tests/resources/bunny.mp4 -fc RGB24 -w 720 -h 480 -o dump -n 100 --planes MERGED
  • Buffer size of processed frames via -bs or --buffer_size option:
python simple.py -i tests/resources/bunny.mp4 -fc RGB24 -w 720 -h 480 -o dump -n 100 --planes MERGED --buffer_size 5

Warning: Buffer size should be less or equal to decoded picture buffer (DPB)

  • GPU used for execution can be set via --cuda_device option:
python simple.py -i tests/resources/bunny.mp4 -fc RGB24 -w 720 -h 480 -o dump -n 100 --planes MERGED --cuda_device 0
  • Input stream reading mode can be chosen with --framerate_mode option. Check help to find available values and description:
python simple.py -i tests/resources/bunny.mp4 -fc RGB24 -w 720 -h 480 -o dump -n 100 --planes MERGED --framerate_mode NATIVE
  • Bitstream analyze stage can be skipped to decrease latency with --skip_analyze flag:
python simple.py -i tests/resources/bunny.mp4 -fc RGB24 -w 720 -h 480 -o dump -n 100 --planes MERGED --skip_analyze
  • Timeout for input frame reading can be set via --timeout option (time in seconds):
python simple.py -i tests/resources/bunny.mp4 -fc RGB24 -w 720 -h 480 -o dump -n 100 --planes MERGED --timeout 2
  • Logs types and levels can be configured with -v, -vd and --nvtx options. Check help to find available values and description:
python simple.py -i tests/resources/bunny.mp4 -fc RGB24 -w 720 -h 480 -o dump -n 100 --planes MERGED -v HIGH -vd CONSOLE --nvtx
  1. Example demonstrates how to use TensorStream in case of several stream consumers:
python many_consumers.py -i tests/resources/bunny.mp4 -n 100
  1. Example demonstrates how to use TensorStream if several streams should be handled simultaneously:
python different_streams.py -i1 <path-to-first-stream> -i2 <path-to-second-stream> -n1 100 -n2 50 -v1 LOW -v2 HIGH --cuda_device1 0 --cuda_device2 1

Warning: Default path to second stream is relative, so need to run different_streams.py from parent folder if no arguments are passing

PyTorch example

Real-time video style transfer example: fast-neural-style.

Documentation

Documentation is in Doxygen, can be built manually.

License

TensorStream is LGPL-2.1 licensed, see the LICENSE file for details.

Used materials in samples

Big Buck Bunny is licensed under the Creative Commons Attribution 3.0 license. (c) copyright 2008, Blender Foundation / www.bigbuckbunny.org

About

A library for real-time video stream decoding to CUDA memory

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 64.5%
  • Python 17.1%
  • Cuda 12.8%
  • CMake 4.4%
  • Other 1.2%