Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support validating nested list of dictionary as input, make base clas… #7

Merged
merged 8 commits into from
Sep 22, 2023
314 changes: 256 additions & 58 deletions plugins/module_utils/dnac.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
DNAC_SDK_IS_INSTALLED = True
from ansible.module_utils._text import to_native
from ansible.module_utils.common import validation
from abc import ABC, abstractmethod
try:
import logging
except ImportError:
Expand All @@ -26,27 +27,74 @@
import inspect


class DnacBase:
class DnacBase(ABC):

"""Class contains members which can be reused for all intent modules"""

def __init__(self, module):
self.module = module
self.params = module.params
self.config = copy.deepcopy(module.params.get("config"))
self.have_create = {}
self.want_create = {}
self.have = {}
self.want = {}
self.validated_config = []
self.msg = ""
self.status = "success"
dnac_params = self.get_dnac_params(self.params)
self.dnac = DNACSDK(params=dnac_params)
self.dnac_apply = {'exec': self.dnac._exec}
self.get_diff_state_apply = {'merged': self.get_diff_merged,
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can we also write for other states?
"merged" : self.get_diff_merged
"replaced" : self.get_diff_replaced
and all..
Also write member functions for all the states..

'deleted': self.get_diff_deleted}
'deleted': self.get_diff_deleted,
'replaced': self.get_diff_replaced,
'overridden': self.get_diff_overridden,
'gathered': self.get_diff_gathered,
'rendered': self.get_diff_rendered,
'parsed': self.get_diff_parsed
}
self.dnac_log = dnac_params.get("dnac_log")
self.log(str(dnac_params))
self.supported_states = ["merged", "deleted"]
log(str(dnac_params))
self.supported_states = ["merged", "deleted", "replaced", "overridden", "gathered", "rendered", "parsed"]
self.result = {"changed": False, "diff": [], "response": [], "warnings": []}

@abstractmethod
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Do we need to write function body for abstractmethod? What is the use of it? Anyhow we are going to override it in base class..

def validate_input(self):
pass

def get_diff_merged(self):
# Implement logic to merge the resource configuration
self.merged = True
return self

def get_diff_deleted(self):
# Implement logic to delete the resource
self.deleted = True
return self

def get_diff_replaced(self):
# Implement logic to replace the resource
self.replaced = True
return self

def get_diff_overridden(self):
# Implement logic to overwrite the resource
self.overridden = True
return self

def get_diff_gathered(self):
# Implement logic to gather data about the resource
self.gathered = True
return self

def get_diff_rendered(self):
# Implement logic to render a configuration template
self.rendered = True
return self

def get_diff_parsed(self):
# Implement logic to parse a configuration file
self.parsed = True
return True

def log(self, message, frameIncrement=0):
"""Log messages into dnac.log file"""

Expand Down Expand Up @@ -97,8 +145,8 @@ def get_task_details(self, task_id):
def reset_values(self):
"""Reset all neccessary attributes to default values"""

self.have_create.clear()
self.want_create.clear()
self.have.clear()
self.want.clear()


def log(msg, frameIncrement=0):
Expand Down Expand Up @@ -203,6 +251,167 @@ def dnac_argument_spec():
return argument_spec


def validate_str(item, param_spec, param_name, invalid_params):
"""
This function checks that the input `item` is a valid string and confirms to
the constraints specified in `param_spec`. If the string is not valid or does
not meet the constraints, an error message is added to `invalid_params`.

Args:
item (str): The input string to be validated.
param_spec (dict): The parameter's specification, including validation constraints.
param_name (str): The name of the parameter being validated.
invalid_params (list): A list to collect validation error messages.

Returns:
str: The validated and possibly normalized string.

Example `param_spec`:
{
"type": "str",
"length_max": 255 # Optional: maximum allowed length
}
"""

item = validation.check_type_str(item)
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can we write Doc string for this new API ?

if param_spec.get("length_max"):
if 1 <= len(item) <= param_spec.get("length_max"):
return item
else:
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

do we need else here as we returning from if block...

invalid_params.append(
"{0}:{1} : The string exceeds the allowed "
"range of max {2} char".format(param_name, item, param_spec.get("length_max"))
)
return item


def validate_int(item, param_spec, param_name, invalid_params):
"""
This function checks that the input `item` is a valid integer and conforms to
the constraints specified in `param_spec`. If the integer is not valid or does
not meet the constraints, an error message is added to `invalid_params`.

Args:
item (int): The input integer to be validated.
param_spec (dict): The parameter's specification, including validation constraints.
param_name (str): The name of the parameter being validated.
invalid_params (list): A list to collect validation error messages.

Returns:
int: The validated integer.

Example `param_spec`:
{
"type": "int",
"range_min": 1, # Optional: minimum allowed value
"range_max": 100 # Optional: maximum allowed value
}
"""

item = validation.check_type_int(item)
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Doc string for this new API

min_value = 1
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can we pass this min_value as the last argument and set 1 as default.

def validate_int(item, param_spec, param_name, invalid_params, min_value = 1):

if param_spec.get("range_min") is not None:
min_value = param_spec.get("range_min")
if param_spec.get("range_max"):
if min_value <= item <= param_spec.get("range_max"):
return item
else:
invalid_params.append(
"{0}:{1} : The item exceeds the allowed "
"range of max {2}".format(param_name, item, param_spec.get("range_max"))
)
return item


def validate_bool(item, param_spec, param_name, invalid_params):
"""
This function checks that the input `item` is a valid boolean value. If it does
not represent a valid boolean value, an error message is added to `invalid_params`.

Args:
item (bool): The input boolean value to be validated.
param_spec (dict): The parameter's specification, including validation constraints.
param_name (str): The name of the parameter being validated.
invalid_params (list): A list to collect validation error messages.

Returns:
bool: The validated boolean value.
"""

return validation.check_type_bool(item)
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Doc String for this API



def validate_list(item, param_spec, param_name, invalid_params):
"""
This function checks if the input `item` is a valid list based on the specified `param_spec`.
It also verifies that the elements of the list match the expected data type specified in the
`param_spec`. If any validation errors occur, they are appended to the `invalid_params` list.

Args:
item (list): The input list to be validated.
param_spec (dict): The parameter's specification, including validation constraints.
param_name (str): The name of the parameter being validated.
invalid_params (list): A list to collect validation error messages.

Returns:
list: The validated list, potentially normalized based on the specification.
"""

try:
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Doc String for this API ..

if param_spec.get("type") == type(item).__name__:
keys_list = []
for dict_key in param_spec:
keys_list.append(dict_key)
if len(keys_list) == 1:
return validation.check_type_list(item)

temp_dict = {keys_list[1]: param_spec[keys_list[1]]}
try:
if param_spec['elements']:
get_spec_type = param_spec['type']
get_spec_element = param_spec['elements']
if type(item).__name__ == get_spec_type:
for element in item:
if type(element).__name__ != get_spec_element:
invalid_params.append(
"{0} is not of the same datatype as expected which is {1}".format(element, get_spec_element)
)
else:
invalid_params.append(
"{0} is not of the same datatype as expected which is {1}".format(item, get_spec_type)
)
except Exception as e:
item, list_invalid_params = validate_list_of_dicts(item, temp_dict)
invalid_params.extend(list_invalid_params)
else:
invalid_params.append("{0} : is not a valid list".format(item))
except Exception as e:
invalid_params.append("{0} : comes into the exception".format(e))

return item


def validate_dict(item, param_spec, param_name, invalid_params):
"""
This function checks if the input `item` is a valid dictionary based on the specified `param_spec`.
If the dictionary does not match the expected data type specified in the `param_spec`,
a validation error is appended to the `invalid_params` list.

Args:
item (dict): The input dictionary to be validated.
param_spec (dict): The parameter's specification, including validation constraints.
param_name (str): The name of the parameter being validated.
invalid_params (list): A list to collect validation error messages.

Returns:
dict: The validated dictionary.
"""

if param_spec.get("type") != type(item).__name__:
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Doc String for this new API

invalid_params.append("{0} : is not a valid dictionary".format(item))
return validation.check_type_dict(item)


def validate_list_of_dicts(param_list, spec, module=None):
"""Validate/Normalize playbook params. Will raise when invalid parameters found.
param_list: a playbook parameter list of dicts
Expand All @@ -211,11 +420,17 @@ def validate_list_of_dicts(param_list, spec, module=None):
foo=dict(type='str', default='bar'))
return: list of normalized input data
"""

v = validation
normalized = []
invalid_params = []

for list_entry in param_list:
valid_params_dict = {}
if not spec:
# Handle the case when spec becomes empty but param list is still there
invalid_params.append("No more spec to validate, but parameters remain")
break
for param in spec:
item = list_entry.get(param)
log(str(item))
Expand All @@ -226,58 +441,41 @@ def validate_list_of_dicts(param_list, spec, module=None):
)
else:
item = spec[param].get("default")
valid_params_dict[param] = item
continue
data_type = spec[param].get("type")
switch = {
"str": validate_str,
"int": validate_int,
"bool": validate_bool,
"list": validate_list,
"dict": validate_dict,
}

validator = switch.get(data_type)
if validator:
item = validator(item, spec[param], param, invalid_params)
else:
type = spec[param].get("type")
if type == "str":
item = v.check_type_str(item)
if spec[param].get("length_max"):
if 1 <= len(item) <= spec[param].get("length_max"):
pass
else:
invalid_params.append(
"{0}:{1} : The string exceeds the allowed "
"range of max {2} char".format(
param, item, spec[param].get("length_max")
)
)
elif type == "int":
item = v.check_type_int(item)
min_value = 1
if spec[param].get("range_min") is not None:
min_value = spec[param].get("range_min")
if spec[param].get("range_max"):
if min_value <= item <= spec[param].get("range_max"):
pass
else:
invalid_params.append(
"{0}:{1} : The item exceeds the allowed "
"range of max {2}".format(
param, item, spec[param].get("range_max")
)
)
elif type == "bool":
item = v.check_type_bool(item)
elif type == "list":
item = v.check_type_list(item)
elif type == "dict":
item = v.check_type_dict(item)

choice = spec[param].get("choices")
if choice:
if item not in choice:
invalid_params.append(
"{0} : Invalid choice provided".format(item)
)
invalid_params.append(
"{0}:{1} : Unsupported data type {2}.".format(param, item, data_type)
)

no_log = spec[param].get("no_log")
if no_log:
if module is not None:
module.no_log_values.add(item)
else:
msg = "\n\n'{0}' is a no_log parameter".format(param)
msg += "\nAnsible module object must be passed to this "
msg += "\nfunction to ensure it is not logged\n\n"
raise Exception(msg)
choice = spec[param].get("choices")
if choice:
if item not in choice:
invalid_params.append(
"{0} : Invalid choice provided".format(item)
)

no_log = spec[param].get("no_log")
if no_log:
if module is not None:
module.no_log_values.add(item)
else:
msg = "\n\n'{0}' is a no_log parameter".format(param)
msg += "\nAnsible module object must be passed to this "
msg += "\nfunction to ensure it is not logged\n\n"
raise Exception(msg)

valid_params_dict[param] = item
normalized.append(valid_params_dict)
Expand Down
Loading