🍍
Hi~I am a Ph.D. student at CUHK Business School. My coding interests include financial time series modeling &
ML.
-
Chinese University of Hong Kong
- HongKong
Pinned Loading
-
MNIST-Image-Recognition-Based-on-Xgboost-Algorithm-and-Features-Extraction
MNIST-Image-Recognition-Based-on-Xgboost-Algorithm-and-Features-Extraction PublicDifferent from the common practice of MNIST image recognition using CNN algorithm, I apply Numpy and OpenCV to extract relevant features from each MNIST figure, and then trains Xgboost recognition …
Jupyter Notebook 6
-
Factor-augmented-vector-autoregressive-FAVAR-WINRATS-code-package-
Factor-augmented-vector-autoregressive-FAVAR-WINRATS-code-package- PublicA powerful & convenient package for a two-step estimation method of the Factor augmented VAR (FAVAR) model, which is mainly based on RATS 10.0 .
-
Value-at-Risk-VaR-Based-on-Historical-Simulation-in-Conjunction-with-GARCH-Model
Value-at-Risk-VaR-Based-on-Historical-Simulation-in-Conjunction-with-GARCH-Model PublicPython code for rolling Value at Risk(VaR) of fiancial assets and some of economic time series, based on the procedure proposed by Hull & White(1998).
-
Option-Hedging-Strategy-Modeling-based-on-Time-Value
Option-Hedging-Strategy-Modeling-based-on-Time-Value PublicPython code for a trading strategy based on time value performed in the SSE 50ETF option market.
1 contribution in the last year
Day of Week | April Apr | May May | June Jun | July Jul | August Aug | September Sep | October Oct | November Nov | December Dec | January Jan | February Feb | March Mar | April Apr | ||||||||||||||||||||||||||||||||||||||||
Sunday Sun | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Monday Mon | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Tuesday Tue | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Wednesday Wed | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Thursday Thu | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Friday Fri | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Saturday Sat |
Less
No contributions.
Low contributions.
Medium-low contributions.
Medium-high contributions.
High contributions.
More