-
Notifications
You must be signed in to change notification settings - Fork 0
Compute Persistence Fisher distance (Fisher information metric between two persistence diagrams with and without Fast Gauss Transform) --- Algorithm 1 in Tam Le & Makoto Yamada NIPS'18
License
lttam/PersistenceFisher
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
NOTES: ---------------------------------- * SETUP: ---------------------------------- + run setup for setpath for figtree (precompiled for Mac and Linux) ---------------------------------- * DEMO: ---------------------------------- + test_dFIM: randomly generate two persistence diagrams, and compute the Fisher information metric between them, with or without Fast Gauss Transform. ---------------------------------- * FUNCTIONS in LIB: ---------------------------------- + compute_dFIM_distance: compute Fisher information metric between two persistence diagrams (without Fast Gauss Transform --- Quadratic complexity) <Algorithm 1 in the NIPS'18 paper) + compute_dFIM_distance_FGT: compute Fisher information metric between two persistence diagrams, approximated by Fast Gauss Transform --- Linear complexity <Algorithm 1 in the NIPS'18 paper> + Third party toolbox (figtree-0.9.3): Fast Gauss Transform library (Link: http://www.umiacs.umd.edu/~morariu/figtree/ or http://sourceforge.net/projects/figtree) ---------------------------------- RELEVANT PAPER: ---------------------------------- Tam Le, Makoto Yamada, Persistence Fisher Kernel: A Riemannian Manifold Kernel for Persistence Diagrams, Neural Information Processing Systems (NIPS), Canada, 2018. ArXiv link: https://arxiv.org/abs/1802.03569 ---------------------------------- * CONTACT ---------------------------------- % Version 0.1 (October 19th, 2018) @ Tam Le - RIKEN AIP Email: tam.le@riken.jp Homepage: https://sites.google.com/site/lttamvn/ Please contact me if you observe any bugs in the execution of the algorithms. Many thanks !!!
About
Compute Persistence Fisher distance (Fisher information metric between two persistence diagrams with and without Fast Gauss Transform) --- Algorithm 1 in Tam Le & Makoto Yamada NIPS'18
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published