Skip to content

Commit

Permalink
[MLIR][ONNX] Add OnnxToTorch support for Maxpool Op (#2695)
Browse files Browse the repository at this point in the history
Add Maxpool ONNX op support.
Add Utils.h/cpp files to create a constant int list for ONNX.
  • Loading branch information
AmosLewis authored Jan 12, 2024
1 parent 670a99a commit c7452af
Show file tree
Hide file tree
Showing 5 changed files with 215 additions and 1 deletion.
23 changes: 23 additions & 0 deletions include/torch-mlir/Conversion/TorchOnnxToTorch/Utils.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
//===------------------------------------------------------------*- C++ -*-===//
//
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//

#ifndef TORCHMLIR_CONVERSION_TORCHONNXTOTORCH_UTILS_H
#define TORCHMLIR_CONVERSION_TORCHONNXTOTORCH_UTILS_H

#include "torch-mlir/Conversion/TorchOnnxToTorch/Patterns.h"

namespace mlir::torch::onnx_c {

Value createConstantIntList(OpBinder binder,
ConversionPatternRewriter &rewriter,
SmallVector<int64_t> cstInput);

} // namespace mlir::torch::onnx_c

#endif // TORCHMLIR_CONVERSION_TORCHONNXTOTORCH_UTILS_H
1 change: 1 addition & 0 deletions lib/Conversion/TorchOnnxToTorch/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ add_mlir_conversion_library(TorchMLIRTorchOnnxToTorch
Passes.cpp
Patterns.cpp
TorchOnnxToTorch.cpp
Utils.cpp

ADDITIONAL_HEADER_DIRS
${PROJECT_SOURCE_DIR}/include/torch-mlir/Conversion/TorchOnnxToTorch
Expand Down
79 changes: 79 additions & 0 deletions lib/Conversion/TorchOnnxToTorch/DefaultDomainGtoP.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
//===----------------------------------------------------------------------===//

#include "torch-mlir/Conversion/TorchOnnxToTorch/Patterns.h"
#include "torch-mlir/Conversion/TorchOnnxToTorch/Utils.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"

using namespace mlir;
Expand Down Expand Up @@ -148,6 +149,84 @@ void mlir::torch::onnx_c::populateDefaultDomainGtoP(
binder.op, resultType, lhs, rhs);
return success();
});
patterns.onOp(
"MaxPool", 12, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
std::string autoPad;
if (binder.customOpNameStringAttr(autoPad, "auto_pad", "NOTSET"))
return rewriter.notifyMatchFailure(binder.op,
"auto_pad bind failure");
if (autoPad != "NOTSET")
return rewriter.notifyMatchFailure(
binder.op, "unsupported conversion: auto_pad != NOTSET");

Torch::ValueTensorType resultType;
Value operand;
bool ceilMode;
int64_t storageOrder;
// TODO: Add support for indices output and storage_order
if (binder.tensorOperand(operand) ||
binder.s64BoolAttr(ceilMode, "ceil_mode", false) ||
binder.s64IntegerAttr(storageOrder, "storage_order", 0) ||
binder.tensorResultType(resultType))
return rewriter.notifyMatchFailure(
binder.op,
"operand/ceil_mode/storage_order/resultType bind failure");
if (storageOrder != 0)
return rewriter.notifyMatchFailure(
binder.op, "storage_order setting is not supported.");
// Determine the rank of input tensor.
std::optional<unsigned> maybeRank = Torch::getTensorRank(operand);
if (!maybeRank)
return rewriter.notifyMatchFailure(binder.op,
"Unimplemented: unranked tensor");
unsigned rank = *maybeRank;

SmallVector<int64_t> kernel, padding, strides, dilations;
if (binder.s64IntegerArrayAttr(kernel, "kernel_shape", {}))
return rewriter.notifyMatchFailure(binder.op,
"kernel_shape bind failure");
if (kernel.size() != rank - 2)
return rewriter.notifyMatchFailure(
binder.op, "kernel list size does not match the number of axes");
if (binder.s64IntegerArrayAttr(padding, "pads", {0}))
return rewriter.notifyMatchFailure(binder.op, "pads bind failure");
if (padding.size() != 1 && padding.size() != rank - 2)
return rewriter.notifyMatchFailure(
binder.op, "padding list size does not match the number of axes");
if (binder.s64IntegerArrayAttr(strides, "strides", {1}))
return rewriter.notifyMatchFailure(binder.op, "strides bind failure");
if (strides.size() != 1 && strides.size() != rank - 2)
return rewriter.notifyMatchFailure(
binder.op, "strides list size does not match the number of axes");
if (binder.s64IntegerArrayAttr(dilations, "dilations", {}))
return rewriter.notifyMatchFailure(binder.op,
"dilations bind failure");

Value kernelSizeList = createConstantIntList(binder, rewriter, kernel);
Value paddingList = createConstantIntList(binder, rewriter, padding);
Value stridesList = createConstantIntList(binder, rewriter, strides);
Value dilationsList =
createConstantIntList(binder, rewriter, dilations);
Value cstCeilMode =
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), ceilMode);

if (rank == 3)
return rewriter.notifyMatchFailure(binder.op,
"Unimplemented: AtenMaxPool1dOp");
if (rank == 4) {
rewriter.replaceOpWithNewOp<Torch::AtenMaxPool2dOp>(
binder.op, resultType, operand, kernelSizeList, stridesList,
paddingList, dilationsList, cstCeilMode);
return success();
}
if (rank == 5) {
rewriter.replaceOpWithNewOp<Torch::AtenMaxPool3dOp>(
binder.op, resultType, operand, kernelSizeList, stridesList,
paddingList, dilationsList, cstCeilMode);
return success();
}
return rewriter.notifyMatchFailure(binder.op, "No rank is matched.");
});
patterns.onOp("Greater", 16,
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
Torch::ValueTensorType resultType;
Expand Down
28 changes: 28 additions & 0 deletions lib/Conversion/TorchOnnxToTorch/Utils.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
//===------------------------------------------------------------*- C++ -*-===//
//
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//

#include "torch-mlir/Conversion/TorchOnnxToTorch/Utils.h"

using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::onnx_c;

Value mlir::torch::onnx_c::createConstantIntList(
OpBinder binder, ConversionPatternRewriter &rewriter,
SmallVector<int64_t> cstInput) {
SmallVector<Value> cstValue;
for (int64_t i : cstInput) {
cstValue.push_back(rewriter.create<Torch::ConstantIntOp>(
binder.getLoc(), rewriter.getI64IntegerAttr(i)));
}
return rewriter.create<Torch::PrimListConstructOp>(
binder.getLoc(),
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
cstValue);
}
Loading

0 comments on commit c7452af

Please sign in to comment.