Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add tcd sampler #2907

Merged
merged 2 commits into from
May 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 20 additions & 0 deletions ldm_patched/contrib/external_custom_sampler.py
Original file line number Diff line number Diff line change
Expand Up @@ -230,6 +230,25 @@ def get_sampler(self, eta, s_noise, r, noise_device):
sampler = ldm_patched.modules.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "r": r})
return (sampler, )


class SamplerTCD:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"eta": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
}
}
RETURN_TYPES = ("SAMPLER",)
CATEGORY = "sampling/custom_sampling/samplers"

FUNCTION = "get_sampler"

def get_sampler(self, eta=0.3):
sampler = ldm_patched.modules.samplers.ksampler("tcd", {"eta": eta})
return (sampler, )


class SamplerCustom:
@classmethod
def INPUT_TYPES(s):
Expand Down Expand Up @@ -292,6 +311,7 @@ def sample(self, model, add_noise, noise_seed, cfg, positive, negative, sampler,
"KSamplerSelect": KSamplerSelect,
"SamplerDPMPP_2M_SDE": SamplerDPMPP_2M_SDE,
"SamplerDPMPP_SDE": SamplerDPMPP_SDE,
"SamplerTCD": SamplerTCD,
"SplitSigmas": SplitSigmas,
"FlipSigmas": FlipSigmas,
}
5 changes: 4 additions & 1 deletion ldm_patched/contrib/external_model_advanced.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,7 @@ class ModelSamplingDiscrete:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"sampling": (["eps", "v_prediction", "lcm"],),
"sampling": (["eps", "v_prediction", "lcm", "tcd"]),
"zsnr": ("BOOLEAN", {"default": False}),
}}

Expand All @@ -90,6 +90,9 @@ def patch(self, model, sampling, zsnr):
elif sampling == "lcm":
sampling_type = LCM
sampling_base = ModelSamplingDiscreteDistilled
elif sampling == "tcd":
sampling_type = ldm_patched.modules.model_sampling.EPS
sampling_base = ModelSamplingDiscreteDistilled

class ModelSamplingAdvanced(sampling_base, sampling_type):
pass
Expand Down
28 changes: 27 additions & 1 deletion ldm_patched/k_diffusion/sampling.py
Original file line number Diff line number Diff line change
Expand Up @@ -752,7 +752,6 @@ def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, n
return x



@torch.no_grad()
def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
# From MIT licensed: https://github.com/Carzit/sd-webui-samplers-scheduler/
Expand Down Expand Up @@ -808,3 +807,30 @@ def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=Non
d_prime = w1 * d + w2 * d_2 + w3 * d_3
x = x + d_prime * dt
return x


@torch.no_grad()
def sample_tcd(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, eta=0.3):
extra_args = {} if extra_args is None else extra_args
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])

model_sampling = model.inner_model.inner_model.model_sampling
timesteps_s = torch.floor((1 - eta) * model_sampling.timestep(sigmas)).to(dtype=torch.long).detach().cpu()
timesteps_s[-1] = 0
alpha_prod_s = model_sampling.alphas_cumprod[timesteps_s]
beta_prod_s = 1 - alpha_prod_s
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args) # predicted_original_sample
eps = (x - denoised) / sigmas[i]
denoised = alpha_prod_s[i + 1].sqrt() * denoised + beta_prod_s[i + 1].sqrt() * eps

if callback is not None:
callback({"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigmas[i], "denoised": denoised})

x = denoised
if eta > 0 and sigmas[i + 1] > 0:
noise = noise_sampler(sigmas[i], sigmas[i + 1])
x = x / alpha_prod_s[i+1].sqrt() + noise * (sigmas[i+1]**2 + 1 - 1/alpha_prod_s[i+1]).sqrt()

return x
8 changes: 4 additions & 4 deletions ldm_patched/modules/model_sampling.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,17 +50,17 @@ def _register_schedule(self, given_betas=None, beta_schedule="linear", timesteps
self.linear_start = linear_start
self.linear_end = linear_end

# self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
# self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
# self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))

sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
self.set_sigmas(sigmas)
self.set_alphas_cumprod(alphas_cumprod.float())

def set_sigmas(self, sigmas):
self.register_buffer('sigmas', sigmas)
self.register_buffer('log_sigmas', sigmas.log())

def set_alphas_cumprod(self, alphas_cumprod):
self.register_buffer("alphas_cumprod", alphas_cumprod.float())

@property
def sigma_min(self):
return self.sigmas[0]
Expand Down
2 changes: 1 addition & 1 deletion ldm_patched/modules/samplers.py
Original file line number Diff line number Diff line change
Expand Up @@ -523,7 +523,7 @@ def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=N

KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm"]
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm", "tcd"]

class KSAMPLER(Sampler):
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
Expand Down
8 changes: 4 additions & 4 deletions modules/async_worker.py
Original file line number Diff line number Diff line change
Expand Up @@ -798,19 +798,19 @@ def handler(async_task):
final_sampler_name = sampler_name
final_scheduler_name = scheduler_name

if scheduler_name == 'lcm':
if scheduler_name in ['lcm', 'tcd']:
final_scheduler_name = 'sgm_uniform'
if pipeline.final_unet is not None:
pipeline.final_unet = core.opModelSamplingDiscrete.patch(
pipeline.final_unet,
sampling='lcm',
sampling=scheduler_name,
zsnr=False)[0]
if pipeline.final_refiner_unet is not None:
pipeline.final_refiner_unet = core.opModelSamplingDiscrete.patch(
pipeline.final_refiner_unet,
sampling='lcm',
sampling=scheduler_name,
zsnr=False)[0]
print('Using lcm scheduler.')
print(f'Using {scheduler_name} scheduler.')

async_task.yields.append(['preview', (13, 'Moving model to GPU ...', None)])

Expand Down
5 changes: 3 additions & 2 deletions modules/flags.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,8 @@
"dpmpp_3m_sde": "",
"dpmpp_3m_sde_gpu": "",
"ddpm": "",
"lcm": "LCM"
"lcm": "LCM",
"tcd": "TCD"
}

SAMPLER_EXTRA = {
Expand All @@ -47,7 +48,7 @@

KSAMPLER_NAMES = list(KSAMPLER.keys())

SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform", "lcm", "turbo", "align_your_steps"]
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform", "lcm", "turbo", "align_your_steps", "tcd"]
SAMPLER_NAMES = KSAMPLER_NAMES + list(SAMPLER_EXTRA.keys())

sampler_list = SAMPLER_NAMES
Expand Down
2 changes: 2 additions & 0 deletions modules/patch_precision.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,8 @@ def patched_register_schedule(self, given_betas=None, beta_schedule="linear", ti
self.linear_end = linear_end
sigmas = torch.tensor(((1 - alphas_cumprod) / alphas_cumprod) ** 0.5, dtype=torch.float32)
self.set_sigmas(sigmas)
alphas_cumprod = torch.tensor(alphas_cumprod, dtype=torch.float32)
self.set_alphas_cumprod(alphas_cumprod)
return


Expand Down