Skip to content
/ prml Public
forked from gerdm/prml

Repository of notes, code and notebooks for the book Pattern Recognition and Machine Learning by Christopher Bishop

Notifications You must be signed in to change notification settings

lisaaaas/prml

 
 

Repository files navigation

Pattern Recognition and Machine Learning (PRML)

MDN

This project is to document my progress in going through Christopher Bishop's PRML book. It contains notebooks to better understand the ideas presented, as well as links to helpful papers and self-made notes.

Useful Links

Content

.
├── README.md
├── chapter01
│   ├── ch1_ex_tests.ipynb
│   ├── chapter1.ipynb
│   └── einsum.ipynb
├── chapter02
│   ├── Exercises.ipynb
│   ├── bayes-binomial.ipynb
│   ├── bayes-normal.ipynb
│   ├── density-estimation.ipynb
│   ├── exponential-family.ipynb
│   ├── mixtures-of-gaussians.ipynb
│   ├── periodic-variables.ipynb
│   ├── robbins-monro.ipynb
│   └── students-t-distribution.ipynb
├── chapter03
│   ├── Bayesian-linear-regression.ipynb
│   ├── equivalent-kernel.ipynb
│   ├── evidence-approximation.ipynb
│   ├── linear-models-for-regression.ipynb
│   ├── predictive-distribution.ipynb
│   └── sequential-bayesian-learning.ipynb
├── chapter04
│   ├── exercises.ipynb
│   ├── fisher-linear-discriminant.ipynb
│   ├── least-squares-classification.ipynb
│   ├── logistic-regression.ipynb
│   └── perceptron.ipynb
├── chapter05
│   ├── Ellipses.ipynb
│   ├── backpropagation.ipynb
│   ├── bayesian-neural-networks.ipynb
│   ├── imgs
│   │   └── f51.png
│   ├── mixture-density-networks.ipynb
│   ├── soft-weight-sharing.ipynb
│   └── weight-space-symmetry.ipynb
├── chapter06
│   ├── gaussian-processes.ipynb
│   └── kernel-regression.ipynb
├── chapter07
│   └── RVMs.ipynb
├── chapter08
│   ├── Trees.ipynb
│   ├── exercises.ipynb
│   ├── graphical-model-inference.ipynb
│   ├── img.jpeg
│   ├── markov-random-fields.ipynb
│   └── sum-product.ipynb
├── chapter09
│   ├── gaussian-mixture-models.ipynb
│   ├── k-means.ipynb
│   └── mixture-of-bernoulli.ipynb
├── chapter10
│   ├── exponential-mixture-gaussians.ipynb
│   ├── local-variational-methods.ipynb
│   ├── mixture-gaussians.ipynb
│   ├── variational-logistic-regression.ipynb
│   └── variational-univariate-gaussian.ipynb
├── chapter11
│   ├── adaptive-rejection-sampling.ipynb
│   ├── gibbs-sampling.ipynb
│   ├── hybrid-montecarlo.ipynb
│   ├── markov-chain-motecarlo.ipynb
│   ├── rejection-sampling.ipynb
│   ├── slice-sampling.ipynb
│   └── transformation-random-variables.ipynb
├── chapter12
│   ├── bayesian-pca.ipynb
│   ├── kernel-pca.ipynb
│   ├── principal-component-analysis.ipynb
│   └── probabilistic-pca.ipynb
└── chapter13
    └── hidden-markov-model.ipynb

15 directories, 62 files

About

Repository of notes, code and notebooks for the book Pattern Recognition and Machine Learning by Christopher Bishop

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%