Skip to content
/ KPGT Public

codes for KPGT (Knowledge-guided Pre-training of Graph Transformer)

License

Notifications You must be signed in to change notification settings

lihan97/KPGT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

KPGT

About

This repository contains the code and resources of the following paper:

A Knowledge-Guided Pre-training Framework for Improving Molecular Representation Learning

Overview of the framework

KPGT is a novel self-supervised learning framework for the representation learning of molecular graphs, consisting of a novel graph transformer architecture, LiGhT, and a knowledge-guided pre-training strategy.

Setup environment

Setup the required environment using environment.yml with Anaconda. While in the project directory run:

conda env create

Activate the environment

conda activate KPGT

Download datasets

We upload the datasets and splits used in our computational tests to figshare.

To download the datasets: https://figshare.com/s/8bbb8cad9ac644bf9caa.

Then unzip the file and put it in the KPGT/ directory.

Pre-train

Download the pre-trained model at: https://figshare.com/s/d488f30c23946cf6898f.

Then unzip it and put it in the KPGT/models/ directory.

You also can follow the steps below to pre-train a new model.

Step 1: Prepare dataset

Extract the molecular descriptors and fingerprints of the SMILES in the ChEMBL dataset:

python preprocess_pretrain_dataset.py --data_path ../datasets/chembl29/

Step 2: Pre-train

Use DistributedDataParallel to pre-train KPGT:

CUDA_VISIBLE_DEVICES=0,1,2,3 python -u -m torch.distributed.run --nproc_per_node=4 --nnodes=1 --master_port 12312 train_kpgt.py --save_path ../models/pretrained/base/ --n_threads 8 --n_devices 4 --config base --n_steps 100000 --data_path ../datasets/chembl29/

You can configure the model by modifing the KPGT/src/model_config.py.

Finetune

Step 1: Prepare dataset

Construct molecular line graphs and extract the molecular descriptors and the fingerprints from SMILES in a downstream dataset (e.g., bace):

python preprocess_downstream_dataset.py --data_path ../datasets/ --dataset bace 

Step 2: Finetune

Fine-tune pre-trained model on a specific downstream task:

For classification tasks:

python finetune.py --config base --model_path ../models/pretrained/base/base.pth  --dataset bace --data_path ../datasets/ --dataset_type classification --metric rocauc --split scaffold-0 --weight_decay 0 --dropout 0 --lr 3e-5

For regression tasks:

python finetune.py --config base --model_path ../models/pretrained/base/base.pth  --dataset freesolv --data_path ../datasets/ --dataset_type regression --metric rmse --split scaffold-0 --weight_decay 0 --dropout 0 --lr 3e-5

Weight decay, dropout and lr are tunable hyper-parameters.

You can activate the fine-tuning strategies using the following flags: --use_flag, --use_llrd, --use_l2sp, and --use_reinit. Each strategy has tunable hyperparameters, which are detailed in the code.

Evaluation

Due to the non-deterministic function in PyTorch, it is hard to exactly reproduce the fine-tuning results. Therefore, we provide the fine-tuned model for eleven datasets under the transfer learning setting, to guarantee the reproducibility of the test results reported in our paper.

Step 1: Download finetuned models

To download the fine-tuned models: https://figshare.com/s/fd55d94d6bb21b8d7c39

Then unzip it and put the files in the KPGT/models/downstream/ directory.

Step 2: Reproduce the results

Then the results can be reproduced by:

python evaluation.py --config base --model_path ../models/downstream/bace/scaffold_0.pth --dataset bace --data_path ../datasets/ --dataset_type classification --metric rocauc --split scaffold-0

The dataset, split and model can be specified using parameters --dataset, --split and --model_path, respectively.

Generate latent features for your datasets

Step 1: Prepare dataset

Construct molecular line graphs and extract the molecular descriptors and the fingerprints from SMILES in a downstream dataset (e.g., bace):

python preprocess_downstream_dataset.py --data_path ../datasets/ --dataset bace 

Step 2: Finetune

To generate latent features for molecules from arbitrary datasets using the pre-trained KPGT:

python extract_features.py --config base --model_path ../models/pretrained/base/base.pth --data_path ../datasets/ --dataset bace

Modify --dataset to specify the target dataset.

Citation

@article{li2023knowledge, title={A knowledge-guided pre-training framework for improving molecular representation learning}, author={Li, Han and Zhang, Ruotian and Min, Yaosen and Ma, Dacheng and Zhao, Dan and Zeng, Jianyang}, journal={Nature Communications}, volume={14}, number={1}, pages={7568}, year={2023}, publisher={Nature Publishing Group UK London} }

@inproceedings{li2022kpgt, title={KPGT: knowledge-guided pre-training of graph transformer for molecular property prediction}, author={Li, Han and Zhao, Dan and Zeng, Jianyang}, booktitle={Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining}, pages={857--867}, year={2022} }

Resources

Baseline methods: https://figshare.com/s/43e2dc41648f4d934c1a

Datasets: https://figshare.com/s/aee05cc329434b629c82

License

KPGT is licensed under the Apache License, Version 2.0: http://www.apache.org/licenses/LICENSE-2.0.

About

codes for KPGT (Knowledge-guided Pre-training of Graph Transformer)

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages