Skip to content

[TGRS2024] MambaHSI: Spatial-Spectral Mamba for Hyperspectral Image Classification

Notifications You must be signed in to change notification settings

li-yapeng/MambaHSI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MambaHSI: Spatial-Spectral Mamba for Hyperspectral Image Classification

📝 Introduction

Motivation
  • To our best knowledge, the MambaHSI is the first image-level hyperspectral image classification model based on SSM, which can simultaneously model long-range interaction of whole image and integrate spatial and spectral image information.
  • MambaHSI demonstrates the great potential of Mamba to be the next-generation backbone for hyperspectral image models.

🚀 Getting Started

Installation

conda create -n MambaHSI_env python=3.9
conda activate MambaHSI_env
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia
pip install packaging==24.0
pip install triton==2.2.0
pip install mamba-ssm==1.2.0
pip install spectral
pip install scikit-learn==1.4.1.post1
pip install calflops

Data Preparation

The dataset can download Google Drive and BaiduNetdisk.

data
└── UP/
    ├── PaviaU.mat 
    └── PaviaU_gt.mat
    ...
└── Houston/
    ├── Houston.mat 
    └── Houston_GT.mat
    ...
└── HanChuan/
    ├── WHU_Hi_HanChuan.mat 
    └── WHU_Hi_HanChuan_gt.mat
    ...
└── HongHu/  
    ├── WHU_Hi_HongHu.npy
    └── WHU_Hi_HongHu_gt.npy

Training:

python train_MambaHSI.py --dataset_index 0
python train_MambaHSI.py --dataset_index 1
python train_MambaHSI.py --dataset_index 2
python train_MambaHSI.py --dataset_index 3

🎖️ Main Results

Pavia University Results PaviaU
Houston Results Houston
HanChuan Results HanChuan
HongHu Results HongHu

Citation

If you find this project helpful for your research, please kindly consider citing our paper and give this repo ⭐️:

@ARTICLE{MambaHSI_TGRS24,
  author={Li, Yapeng and Luo, Yong and Zhang, Lefei and Wang, Zengmao and Du, Bo},
  journal={IEEE Transactions on Geoscience and Remote Sensing}, 
  title={MambaHSI: Spatial-Spectral Mamba for Hyperspectral Image Classification}, 
  year={2024},
  volume={},
  number={},
  pages={1-16},
  keywords={Hyperspectral Image Classification;Mamba;State Space Models;Transformer},
  doi={10.1109/TGRS.2024.3430985}}

Acknowledgement

Part of our MambaHSI framework is referred to CVSSN and SSFCN. We thank all the contributors for open-sourcing.

About

[TGRS2024] MambaHSI: Spatial-Spectral Mamba for Hyperspectral Image Classification

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published