- To our best knowledge, the MambaHSI is the first image-level hyperspectral image classification model based on SSM, which can simultaneously model long-range interaction of whole image and integrate spatial and spectral image information.
- MambaHSI demonstrates the great potential of Mamba to be the next-generation backbone for hyperspectral image models.
conda create -n MambaHSI_env python=3.9
conda activate MambaHSI_env
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia
pip install packaging==24.0
pip install triton==2.2.0
pip install mamba-ssm==1.2.0
pip install spectral
pip install scikit-learn==1.4.1.post1
pip install calflops
The dataset can download Google Drive and BaiduNetdisk.
data
└── UP/
├── PaviaU.mat
└── PaviaU_gt.mat
...
└── Houston/
├── Houston.mat
└── Houston_GT.mat
...
└── HanChuan/
├── WHU_Hi_HanChuan.mat
└── WHU_Hi_HanChuan_gt.mat
...
└── HongHu/
├── WHU_Hi_HongHu.npy
└── WHU_Hi_HongHu_gt.npy
Training:
python train_MambaHSI.py --dataset_index 0
python train_MambaHSI.py --dataset_index 1
python train_MambaHSI.py --dataset_index 2
python train_MambaHSI.py --dataset_index 3
If you find this project helpful for your research, please kindly consider citing our paper and give this repo ⭐️:
@ARTICLE{MambaHSI_TGRS24,
author={Li, Yapeng and Luo, Yong and Zhang, Lefei and Wang, Zengmao and Du, Bo},
journal={IEEE Transactions on Geoscience and Remote Sensing},
title={MambaHSI: Spatial-Spectral Mamba for Hyperspectral Image Classification},
year={2024},
volume={},
number={},
pages={1-16},
keywords={Hyperspectral Image Classification;Mamba;State Space Models;Transformer},
doi={10.1109/TGRS.2024.3430985}}
Part of our MambaHSI framework is referred to CVSSN and SSFCN. We thank all the contributors for open-sourcing.