-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
10 changed files
with
2,158 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
|
||
from . import modules | ||
from . import scheduler | ||
from .interface import Interface | ||
|
||
__version__ = "0.0.1" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,250 @@ | ||
import json | ||
import logging | ||
import warnings | ||
from dataclasses import dataclass | ||
from pathlib import Path | ||
from typing import Any | ||
from typing import List | ||
from typing import Tuple | ||
from typing import Union | ||
|
||
import librosa | ||
import torch | ||
import numpy as np | ||
from audiotools import AudioSignal | ||
|
||
|
||
logging.basicConfig(level=logging.INFO) | ||
|
||
################### | ||
# beat sync utils # | ||
################### | ||
|
||
AGGREGATOR_REGISTRY = { | ||
"mean": np.mean, | ||
"median": np.median, | ||
"max": np.max, | ||
"min": np.min, | ||
} | ||
|
||
|
||
def list_aggregators() -> list: | ||
return list(AGGREGATOR_REGISTRY.keys()) | ||
|
||
|
||
@dataclass | ||
class TimeSegment: | ||
start: float | ||
end: float | ||
|
||
@property | ||
def duration(self): | ||
return self.end - self.start | ||
|
||
def __str__(self) -> str: | ||
return f"{self.start} - {self.end}" | ||
|
||
def find_overlapping_segment( | ||
self, segments: List["TimeSegment"] | ||
) -> Union["TimeSegment", None]: | ||
"""Find the first segment that overlaps with this segment, or None if no segment overlaps""" | ||
for s in segments: | ||
if s.start <= self.start and s.end >= self.end: | ||
return s | ||
return None | ||
|
||
|
||
def mkdir(path: Union[Path, str]) -> Path: | ||
p = Path(path) | ||
p.mkdir(parents=True, exist_ok=True) | ||
return p | ||
|
||
|
||
|
||
################### | ||
# beat data # | ||
################### | ||
@dataclass | ||
class BeatSegment(TimeSegment): | ||
downbeat: bool = False # if there's a downbeat on the start_time | ||
|
||
|
||
class Beats: | ||
def __init__(self, beat_times, downbeat_times): | ||
if isinstance(beat_times, np.ndarray): | ||
beat_times = beat_times.tolist() | ||
if isinstance(downbeat_times, np.ndarray): | ||
downbeat_times = downbeat_times.tolist() | ||
self._beat_times = beat_times | ||
self._downbeat_times = downbeat_times | ||
self._use_downbeats = False | ||
|
||
def use_downbeats(self, use_downbeats: bool = True): | ||
"""use downbeats instead of beats when calling beat_times""" | ||
self._use_downbeats = use_downbeats | ||
|
||
def beat_segments(self, signal: AudioSignal) -> List[BeatSegment]: | ||
""" | ||
segments a song into time segments corresponding to beats. | ||
the first segment starts at 0 and ends at the first beat time. | ||
the last segment starts at the last beat time and ends at the end of the song. | ||
""" | ||
beat_times = self._beat_times.copy() | ||
downbeat_times = self._downbeat_times | ||
beat_times.insert(0, 0) | ||
beat_times.append(signal.signal_duration) | ||
|
||
downbeat_ids = np.intersect1d(beat_times, downbeat_times, return_indices=True)[ | ||
1 | ||
] | ||
is_downbeat = [ | ||
True if i in downbeat_ids else False for i in range(len(beat_times)) | ||
] | ||
segments = [ | ||
BeatSegment(start_time, end_time, downbeat) | ||
for start_time, end_time, downbeat in zip( | ||
beat_times[:-1], beat_times[1:], is_downbeat | ||
) | ||
] | ||
return segments | ||
|
||
def get_beats(self) -> np.ndarray: | ||
"""returns an array of beat times, in seconds | ||
if downbeats is True, returns an array of downbeat times, in seconds | ||
""" | ||
return np.array( | ||
self._downbeat_times if self._use_downbeats else self._beat_times | ||
) | ||
|
||
@property | ||
def beat_times(self) -> np.ndarray: | ||
"""return beat times""" | ||
return np.array(self._beat_times) | ||
|
||
@property | ||
def downbeat_times(self) -> np.ndarray: | ||
"""return downbeat times""" | ||
return np.array(self._downbeat_times) | ||
|
||
def beat_times_to_feature_frames( | ||
self, signal: AudioSignal, features: np.ndarray | ||
) -> np.ndarray: | ||
"""convert beat times to frames, given an array of time-varying features""" | ||
beat_times = self.get_beats() | ||
beat_frames = ( | ||
beat_times * signal.sample_rate / signal.signal_length * features.shape[-1] | ||
).astype(np.int64) | ||
return beat_frames | ||
|
||
def sync_features( | ||
self, feature_frames: np.ndarray, features: np.ndarray, aggregate="median" | ||
) -> np.ndarray: | ||
"""sync features to beats""" | ||
if aggregate not in AGGREGATOR_REGISTRY: | ||
raise ValueError(f"unknown aggregation method {aggregate}") | ||
|
||
return librosa.util.sync( | ||
features, feature_frames, aggregate=AGGREGATOR_REGISTRY[aggregate] | ||
) | ||
|
||
def to_json(self) -> dict: | ||
"""return beats and downbeats as json""" | ||
return { | ||
"beats": self._beat_times, | ||
"downbeats": self._downbeat_times, | ||
"use_downbeats": self._use_downbeats, | ||
} | ||
|
||
@classmethod | ||
def from_dict(cls, data: dict): | ||
"""load beats and downbeats from json""" | ||
inst = cls(data["beats"], data["downbeats"]) | ||
inst.use_downbeats(data["use_downbeats"]) | ||
return inst | ||
|
||
def save(self, output_dir: Path): | ||
"""save beats and downbeats to json""" | ||
mkdir(output_dir) | ||
with open(output_dir / "beats.json", "w") as f: | ||
json.dump(self.to_json(), f) | ||
|
||
@classmethod | ||
def load(cls, input_dir: Path): | ||
"""load beats and downbeats from json""" | ||
beats_file = Path(input_dir) / "beats.json" | ||
with open(beats_file, "r") as f: | ||
data = json.load(f) | ||
return cls.from_dict(data) | ||
|
||
|
||
################### | ||
# beat tracking # | ||
################### | ||
|
||
|
||
class BeatTracker: | ||
def extract_beats(self, signal: AudioSignal) -> Tuple[np.ndarray, np.ndarray]: | ||
"""extract beats from an audio signal""" | ||
raise NotImplementedError | ||
|
||
def __call__(self, signal: AudioSignal) -> Beats: | ||
"""extract beats from an audio signal | ||
NOTE: if the first beat (and/or downbeat) is detected within the first 100ms of the audio, | ||
it is discarded. This is to avoid empty bins with no beat synced features in the first beat. | ||
Args: | ||
signal (AudioSignal): signal to beat track | ||
Returns: | ||
Tuple[np.ndarray, np.ndarray]: beats and downbeats | ||
""" | ||
beats, downbeats = self.extract_beats(signal) | ||
return Beats(beats, downbeats) | ||
|
||
|
||
class WaveBeat(BeatTracker): | ||
def __init__(self, ckpt_path: str = "checkpoints/wavebeat", device: str = "cpu"): | ||
from wavebeat.dstcn import dsTCNModel | ||
|
||
model = dsTCNModel.load_from_checkpoint(ckpt_path, map_location=torch.device(device)) | ||
model.eval() | ||
|
||
self.device = device | ||
self.model = model | ||
|
||
def extract_beats(self, signal: AudioSignal) -> Tuple[np.ndarray, np.ndarray]: | ||
"""returns beat and downbeat times, in seconds""" | ||
# extract beats | ||
beats, downbeats = self.model.predict_beats_from_array( | ||
audio=signal.audio_data.squeeze(0), | ||
sr=signal.sample_rate, | ||
use_gpu=self.device != "cpu", | ||
) | ||
|
||
return beats, downbeats | ||
|
||
|
||
class MadmomBeats(BeatTracker): | ||
def __init__(self): | ||
raise NotImplementedError | ||
|
||
def extract_beats(self, signal: AudioSignal) -> Tuple[np.ndarray, np.ndarray]: | ||
"""returns beat and downbeat times, in seconds""" | ||
pass | ||
|
||
|
||
BEAT_TRACKER_REGISTRY = { | ||
"wavebeat": WaveBeat, | ||
"madmom": MadmomBeats, | ||
} | ||
|
||
|
||
def list_beat_trackers() -> list: | ||
return list(BEAT_TRACKER_REGISTRY.keys()) | ||
|
||
|
||
def load_beat_tracker(beat_tracker: str, **kwargs) -> BeatTracker: | ||
if beat_tracker not in BEAT_TRACKER_REGISTRY: | ||
raise ValueError( | ||
f"Unknown beat tracker {beat_tracker}. Available: {list_beat_trackers()}" | ||
) | ||
|
||
return BEAT_TRACKER_REGISTRY[beat_tracker](**kwargs) |
Oops, something went wrong.