-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompute_1000G_cisinteractionscores.py
422 lines (327 loc) · 15.1 KB
/
compute_1000G_cisinteractionscores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
"""
Implements fast calculation of MELD scores
Gregory Darnell and Samuel Pattillo Smith
Extended from initial script written by Shadi Zabad, April 2020
"""
import numpy as np
import pandas as pd
import time
import sys
import os
import errno
import argparse
from pandas_plink import read_plink1_bin
from subprocess import check_call
import csv
from numba import njit, prange
from multiprocessing import Pool
from itertools import product
def makedir(cdir):
try:
os.makedirs(cdir)
except OSError as e:
if e.errno != errno.EEXIST:
raise
def read_plink_files(input_fname, chr_num):
# Read/transform genotype matrices:
try:
gt_ac = read_plink1_bin(input_fname % chr_num + ".bed")
except Exception as e:
raise e
gt_ac = np.abs(gt_ac.values - 2).astype(np.int64)
ngt_ac = (gt_ac - gt_ac.mean(axis=0)) / gt_ac.std(axis=0)
# Read the .bim file:
try:
gt_meta = pd.read_csv(input_fname % chr_num + ".bim",
names=['CHR', 'SNP', 'CM', 'BP', 'A1', 'A2'], sep='\t')
except Exception as e:
raise e
maf = gt_ac.sum(axis=0) / (2. * gt_ac.shape[0])
maf = np.round(np.where(maf > .5, 1. - maf, maf), float_precision)
gt_meta['MAF'] = maf
gt_meta = gt_meta[['CHR', 'SNP', 'CM', 'BP', 'MAF']]
if weights:
sel_snp_idx = np.where(gt_meta['SNP'].isin(snp_list.squeeze()))[0]
fgt_meta = gt_meta.iloc[sel_snp_idx, ].reset_index(drop=True)
fgt_ac = gt_ac[:, sel_snp_idx]
fngt_ac = ngt_ac[:, sel_snp_idx]
return fgt_ac, fngt_ac, fgt_meta
else:
return gt_ac, ngt_ac, gt_meta
# --------------- Auxiliary Functions ---------------
@njit(parallel=True)
def numba_count(a, out, m, n):
for i in prange(m):
for j in prange(n):
out[a[i, j], i] += 1
@njit(parallel=True)
def bincount2D_numba(a, bin_num=9):
m, n = a.shape
out = np.zeros((bin_num, m), dtype=np.int_)
numba_count(a, out, m, n)
return out
@njit
def d_squared_unphased(counts, n):
"""
Implementation by Aaron Ragsdale
"""
n1 = counts[0, :]
n2 = counts[1, :]
n3 = counts[2, :]
n4 = counts[3, :]
n5 = counts[4, :]
n6 = counts[5, :]
n7 = counts[6, :]
n8 = counts[7, :]
n9 = counts[8, :]
numer = ((n2 * n4 - n2 ** 2 * n4 + 4 * n3 * n4 - 4 * n2 * n3 * n4 - 4 * n3 ** 2 * n4 - n2 * n4 ** 2 -
4 * n3 * n4 ** 2 + n1 * n5 - n1 ** 2 * n5 + n3 * n5 + 2 * n1 * n3 * n5 - n3 ** 2 * n5 -
4 * n3 * n4 * n5 - n1 * n5 ** 2 - n3 * n5 ** 2 + 4 * n1 * n6 - 4 * n1 ** 2 * n6 + n2 * n6 -
4 * n1 * n2 * n6 - n2 ** 2 * n6 + 2 * n2 * n4 * n6 - 4 * n1 * n5 * n6 - 4 * n1 * n6 ** 2 - n2 * n6 ** 2 +
4 * n2 * n7 - 4 * n2 ** 2 * n7 + 16 * n3 * n7 - 16 * n2 * n3 * n7 - 16 * n3 ** 2 * n7 -
4 * n2 * n4 * n7 - 16 * n3 * n4 * n7 + n5 * n7 + 2 * n1 * n5 * n7 -
4 * n2 * n5 * n7 - 18 * n3 * n5 * n7 - n5 ** 2 * n7 + 4 * n6 * n7 + 8 * n1 * n6 * n7 - 16 * n3 * n6 * n7 -
4 * n5 * n6 * n7 - 4 * n6 ** 2 * n7 - 4 * n2 * n7 ** 2 - 16 * n3 * n7 ** 2 - n5 * n7 ** 2 -
4 * n6 * n7 ** 2 + 4 * n1 * n8 - 4 * n1 ** 2 * n8 + 4 * n3 * n8 + 8 * n1 * n3 * n8 -
4 * n3 ** 2 * n8 + n4 * n8 - 4 * n1 * n4 * n8 + 2 * n2 * n4 * n8 - n4 ** 2 * n8 -
4 * n1 * n5 * n8 - 4 * n3 * n5 * n8 + n6 * n8 + 2 * n2 * n6 * n8 - 4 * n3 * n6 * n8 +
2 * n4 * n6 * n8 - n6 ** 2 * n8 - 16 * n3 * n7 * n8 - 4 * n6 * n7 * n8 - 4 * n1 * n8 ** 2 -
4 * n3 * n8 ** 2 - n4 * n8 ** 2 - n6 * n8 ** 2 + 16 * n1 * n9 - 16 * n1 ** 2 * n9 +
4 * n2 * n9 - 16 * n1 * n2 * n9 - 4 * n2 ** 2 * n9 + 4 * n4 * n9 - 16 * n1 * n4 * n9 + 8 * n3 * n4 * n9 -
4 * n4 ** 2 * n9 + n5 * n9 - 18 * n1 * n5 * n9 - 4 * n2 * n5 * n9 + 2 * n3 * n5 * n9 -
4 * n4 * n5 * n9 - n5 ** 2 * n9 - 16 * n1 * n6 * n9 -
4 * n2 * n6 * n9 + 8 * n2 * n7 * n9 + 2 * n5 * n7 * n9 - 16 * n1 * n8 * n9 - 4 * n4 * n8 * n9 -
16 * n1 * n9 ** 2 - 4 * n2 * n9 ** 2 -
4 * n4 * n9 ** 2 - n5 * n9 ** 2) / 16. +
(-((n2 / 2. + n3 + n5 / 4. + n6 / 2.) * (n4 / 2. + n5 / 4. + n7 + n8 / 2.)) +
(n1 + n2 / 2. + n4 / 2. + n5 / 4.) * (n5 / 4. + n6 / 2. + n8 / 2. + n9)) ** 2)
return 4. * numer / (n * (n - 1) * (n - 2) * (n - 3))
# --------------------------------------------------
# --------------- LD Score Functions ---------------
# --------------------------------------------------
def compute_modified_ld_score(j, max_cm_dist=1.):
# Obtain neighboring SNPs information:
# --------------------------------------------
# Condition to exclude focal snp: (gt_meta.index != gt_meta.iloc[j, ].name) &
neighb_snps = gt_meta.loc[(np.abs(gt_meta['CM'] - gt_meta.iloc[j, ]['CM']) <= max_cm_dist), ]
neighb_snps_annot = neighb_snps.iloc[:, annot_start_idx:].values
neighb_snps_idx = neighb_snps.index.values
var_xk = neighb_snps['VAR'].values
var_xj = gt_meta.iloc[j, ]['VAR']
# --------------------------------------------
# Compute D^2
#gt_counts = gt_ac[:, j, np.newaxis] * 3 + gt_ac[:, neighb_snps_idx]
#count_mat = bincount2D_numba(gt_counts.T)
## D^2 vector with all neighboring SNPs:
#D2 = d_squared_unphased(count_mat[::-1, :], N)
#D2 = (4. / var_xj) * D2
# --------------------------------------------
# Compute r^2
uncr_r2 = (np.dot(ngt_ac[:, j], ngt_ac[:, neighb_snps_idx]) / N)**2
r2 = uncr_r2 - (1. - uncr_r2)/(N - 2)
# --------------------------------------------
# Compute scores based on different estimators/assumptions:
# = = = = = = D^2 based estimators = = = = = =
scores = [] # list of numpy arrays of shape (1 x n_annot)
for lds in scores_to_compute.values():
if lds['estimator'] == 'D2':
scores.append(
np.dot((neighb_snps_annot * (var_xk.reshape(-1, 1)**(-lds['alpha']))).T,
D2)
)
elif lds['estimator'] == 'R2':
scores.append(
np.dot((neighb_snps_annot * (var_xk.reshape(-1, 1) ** (1. - lds['alpha']))).T,
r2)
)
elif lds['estimator'] == 'NR2':
scores.append(
np.dot((neighb_snps_annot * (var_xk.reshape(-1, 1) ** (1. - lds['alpha']))).T,
uncr_r2)
)
else:
raise Exception(f"LD estimator {lds['estimator']} not implemented!")
return j, scores
def compute_meld_score(j, win_size, max_cm_dist=1.):
# Obtain neighboring SNPs information:
# --------------------------------------------
# Condition to exclude focal snp: (gt_meta.index != gt_meta.iloc[j, ].name) &
neighb_snps = gt_meta.loc[(np.abs(gt_meta['CM'] - gt_meta.iloc[j, ]['CM']) <= max_cm_dist), ]
neighb_snps = neighb_snps.drop_duplicates(subset = ['SNP'],keep = 'first')
neighb_snps = neighb_snps.reset_index(drop = True)
# condition to exclude focal snp below
#neighb_snps = gt_meta.loc[(np.abs(gt_meta['CM'] - gt_meta.iloc[j, ]['CM']) <= max_cm_dist) \
# & (gt_meta.index != gt_meta.iloc[j,].name), ]
neighb_snps_annot = neighb_snps.iloc[:, annot_start_idx:].values
# reduce annotation by 1 column for MELD
neighb_snps_annot = neighb_snps_annot[:,0][:,None]
neighb_snps_idx = neighb_snps.index.values
var_xk = neighb_snps['VAR'].values
var_xj = gt_meta.iloc[j, ]['VAR']
# --------------------------------------------
# Compute D^2
#gt_counts = gt_ac[:, j, np.newaxis] * 3 + gt_ac[:, neighb_snps_idx]
#count_mat = bincount2D_numba(gt_counts.T)
## D^2 vector with all neighboring SNPs:
#D2 = d_squared_unphased(count_mat[::-1, :], N)
#D2 = (4. / var_xj) * D2
# --------------------------------------------
# Compute r^2
uncr_r2 = (np.dot(ngt_ac[:, j], ngt_ac[:, neighb_snps_idx]) / N)**2
r2 = uncr_r2 - (1. - uncr_r2)/(N - 2)
# --------------------------------------------
# Compute scores based on different estimators/assumptions:
# = = = = = = D^2 based estimators = = = = = =
scores = [] # list of numpy arrays of shape (1 x n_annot)
# COMPUTE MELD SCORES
meld_half_win = int(win_size/2)
min_win = max(0,j - meld_half_win)
max_win = min(len(gt_meta)-1,j + meld_half_win)
neighb_snps_meld = gt_meta.iloc[min_win:max_win+1, ]
# condition to exclude focal snp below
#neighb_snps_meld = neighb_snps_meld.loc[neighb_snps_meld.index != gt_meta.iloc[j,].name]
neighb_snps_idx_meld = neighb_snps_meld.index.values
var_xk_meld = neighb_snps_meld['VAR'].values
# create W matrix
uncr_r2_meld = (np.dot(ngt_ac[:, j]**2,ngt_ac[:, neighb_snps_idx_meld]) / N)**2
r2_meld = uncr_r2_meld - (1. - uncr_r2_meld)/(N - 2)
r2_meld *= var_xk_meld
meld_score = sum(r2_meld)
for lds in scores_to_compute.values():
if lds['estimator'] == 'D2':
scores.append(
np.dot((neighb_snps_annot * (var_xk.reshape(-1, 1)**(-lds['alpha']))).T,
D2)
)
elif lds['estimator'] == 'R2':
scores.append(
np.dot((neighb_snps_annot * (var_xk.reshape(-1, 1) ** (1. - lds['alpha']))).T,
r2)
)
elif lds['estimator'] == 'NR2':
scores.append(
np.dot((neighb_snps_annot * (var_xk.reshape(-1, 1) ** (1. - lds['alpha']))).T,
uncr_r2)
)
else:
raise Exception(f"LD estimator {lds['estimator']} not implemented!")
scores[-1] = np.append(scores[-1],meld_score)
return j, scores
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='LD Score Regression Using 1000 Genomes Project Data')
parser.add_argument('--pop', dest='pop', type=str, default='EUR',
help='The population name')
parser.add_argument('--weights', dest='weights', action='store_true',
help='Calculate the weights for the LDSC')
parser.add_argument('--chrom', dest='chrom', type=int)
parser.add_argument('--win', dest='win', type=int)
parser.add_argument('--alpha',dest = 'alpha',type = float)
parser.add_argument('--plink_dir',dest = 'plink_dir',type = str)
parser.add_argument('--out',dest = 'out',type = str)
parser.add_argument('--filter_list',dest = 'list',type = str)
parser.add_argument('--annotations',dest = 'annotations',type = str)
args = parser.parse_args()
chrom = args.chrom
win = args.win
# Global parameters
# ---------------------------------------------------------
dist_measure = "cM"
annot_start_idx = 6
weights = args.weights
ld_estimator = ['R2']
alpha = [args.alpha]
scores_to_compute = {
lde + '_' + str(a): {
'estimator': lde,
'alpha': a
}
for lde in ld_estimator for a in alpha
}
population = args.pop
# = = = = = = = = = =
# Computational configurations:
num_proc = 4
float_precision = 15
os.environ["OMP_NUM_THREADS"] = "2"
os.environ["NUMBA_NUM_THREADS"] = "2"
# = = = = = = = = = =
# Input:
plink_dir = args.plink_dir + '%s'
w_snp_filter = args.list
annotations = args.annotations + '.%d.annot'
output_dir = args.out
output_dirs = [os.path.join(output_dir, sn) for sn in scores_to_compute]
[makedir(od) for od in output_dirs]
# = = = = = = = = = =
# Read the snp filter file:
snp_filter = False
if not w_snp_filter == None:
snp_list = pd.read_csv(w_snp_filter, sep="\t")['SNP'].values
snp_filter = True
# ---------------------------------------------------------
for chr_num in range(chrom, chrom+1):
output_files = [os.path.join(od, f"MELD.win_{win}.{str(chr_num)}.l2.ldscore") for od in output_dirs]
print("Processing chromosome %s..." % str(chr_num))
# Read the genotype file:
try:
gt_ac, ngt_ac, gt_meta = read_plink_files(plink_dir, str(chr_num))
except Exception as e:
continue
N, M = gt_ac.shape
gt_meta['VAR'] = 2.*gt_meta['MAF']*(1. - gt_meta['MAF'])
# Read the annotations file:
if weights:
gt_meta['base'] = 1.
else:
try:
annot_df = pd.read_csv(annotations % chr_num, sep="\s+").drop(['CHR', 'BP', 'CM'], axis=1)
gt_meta = pd.merge(gt_meta, annot_df, on='SNP')
except Exception as exp:
gt_meta['base'] = 1.
output_colnames = [[cn + sn for cn in gt_meta.columns[annot_start_idx:]]
for sn in scores_to_compute]
print("Computing LD Scores...")
if not weights:
alphas = [scores_to_compute[sn]['alpha'] for sn in scores_to_compute]
for idx,of in enumerate(output_files):
alpha = 1.0 - alphas[idx]
# when using an \alpha parameter, need to correct .M files
# with total number of SNPs corrected by variance^alpha
# in order for LDSC heritabilities to be computed correctly
M_tot = gt_meta.iloc[:,annot_start_idx:].multiply(gt_meta["VAR"],axis="index")
M_tot = M_tot**alpha
M_tot = M_tot.sum(axis=0).values
M_5_50 = gt_meta.loc[gt_meta['MAF'] >= .05, ].iloc[:, annot_start_idx:].multiply(gt_meta["VAR"],axis="index")
M_5_50 = M_5_50**alpha
M_5_50 = M_5_50.sum(axis=0).values
np.savetxt(of.replace('.ldscore', '.M'), M_tot.reshape(1, -1), delimiter="\t", fmt='%.1f')
np.savetxt(of.replace('.ldscore', '.M_5_50'), M_5_50.reshape(1, -1), delimiter="\t", fmt='%.1f')
start = time.time()
pool = Pool(num_proc)
open_files = [open(outf, 'w') for outf in output_files]
csv_writers = [csv.writer(outf, delimiter='\t') for outf in open_files]
# Write the column names:
for cw, col in zip(csv_writers, output_colnames):
cw.writerow(list(gt_meta.columns[:annot_start_idx - 1]) + col)
# Select the subset of snps to compute the the LD scores for:
if snp_filter:
snps_to_process = list(np.where(gt_meta['SNP'].isin(snp_list.squeeze()))[0])
else:
snps_to_process = gt_meta.index
# Compute the LD Scores:
# last parameter (1) is the distance for ld score neighbors (in cM)
for idx, (snp_idx, ld_scores) \
in enumerate(pool.starmap(compute_meld_score, product(snps_to_process, [win], [1])), 1):
for cw, lds in zip(csv_writers, ld_scores):
cw.writerow(list(gt_meta.iloc[snp_idx, :annot_start_idx - 1]) +
list(np.round(lds, float_precision)))
if idx % 1000 == 0:
print("Computed LD Score for %d variants" % idx)
sys.stdout.flush()
[outf.close() for outf in open_files]
pool.close()
pool.join()
end = time.time()
print("Processing Time:", end - start)
# Gzip the output file
[check_call(['gzip', '-f', of]) for of in output_files]