source code of Simple and Efficient Partial Graph Adversarial Attack: A New Perspective
- models: implementations of GNN models
- victims: training GNN models
- configs: hyperparameters of models
- models: saving checkpoints
- attackers: implementations of attack methods
- attack: perform attacks
- configs: hyperparameters of attacks
- perturbed_adjs: adversarial graphs generated by attackers
- Training GNN models
> cd victims
> python train.py --model=gcn --dataset=cora
- Perform attacks
> cd attack
> python gen_attack.py
- Training GNN models
> cd victims
> python train.py
- Generate statistics of graphs, such as node degrees, classification margin and etc.
> cd analysis
> python gen_statistics.py --dataset=cora
- Perform PGA attack
> cd attack
> python gen_attack.py --attack=pga --dataset=cora
> python evasion_attack.py --victim=robust --dataset=cora
> python evasion_attack.py --victim=normal --dataset=cora
> python poison_attack.py --victim=gcn --dataset=cora
> python poison_attack.py --victim=gat --dataset=cora
- deeprobust
- torch_geometry
- torch_sparse
- torch_scatter