- Using Upsampling Layer
- Using the Transpose Convolutional Layer
- Deep Convolutional GANs (DCGANs)
- Downsample Using Strided Convolutions
- Upsample Using Strided Convolutions
- Using Leaky ReLU
- Using Batch Normalization
- Using Gaussian Weight Initialization
- Using Adam Stochastic Gradient Descent
- Scaling images to the Range[-1,1]
- Soumith Chintala's GAN Hacks
- Using a Gaussian Latent Space
- Using Label Smoothing
- Using Noisy Labels
- Selecting a One-Dimensional Function
- Defining a Discriminator Model
- Defining a Generator Model
- Training the Generator Model
- Evaluating the Performance of the GAN
- Complete Example of Training the GAN